Dick H. W. Dekkers
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dick H. W. Dekkers.
Nature | 2013
V. Stalin Raj; Huihui Mou; Saskia L. Smits; Dick H. W. Dekkers; Marcel A. Müller; Ronald Dijkman; Doreen Muth; Jeroen Demmers; Ali Moh Zaki; Ron A. M. Fouchier; Volker Thiel; Christian Drosten; Peter J. M. Rottier; Albert D. M. E. Osterhaus; Berend Jan Bosch; Bart L. Haagmans
Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.
Hypertension | 2006
Jasper J. Saris; Peter A. C. 't Hoen; Ingrid M. Garrelds; Dick H. W. Dekkers; Johan T. den Dunnen; Jos M.J. Lamers; A.H. Jan Danser
Tissue accumulation of circulating prorenin results in angiotensin generation, but could also, through binding to the recently cloned (pro)renin receptor, lead to angiotensin-independent effects, like p42/p44 mitogen-activated protein kinase (MAPK) activation and plasminogen-activator inhibitor (PAI)-1 release. Here we investigated whether prorenin exerts angiotensin-independent effects in neonatal rat cardiomyocytes. Polyclonal antibodies detected the (pro)renin receptor in these cells. Prorenin affected neither p42/p44 MAPK nor PAI-1. PAI-1 release did occur during coincubation with angiotensinogen, suggesting that this effect is angiotensin mediated. Prorenin concentration-dependently activated p38 MAPK and simultaneously phosphorylated HSP27. The latter phosphorylation was blocked by the p38 MAPK inhibitor SB203580. Rat microarray gene (n=4800) transcription profiling of myocytes stimulated with prorenin detected 260 regulated genes (P<0.001 versus control), among which genes downstream of p38 MAPK and HSP27 involved in actin filament dynamics and (cis-)regulated genes confined in blood pressure and diabetes QTL regions, like Syntaxin-7, were overrepresented. Quantitative real-time RT-PCR of 7 selected genes (Opg, Timp1, Best5, Hsp27, pro-Anp, Col3a1, and Hk2) revealed temporal regulation, with peak levels occurring after 4 hours of prorenin exposure. This regulation was not altered in the presence of the renin inhibitor aliskiren or the angiotensin II type 1 receptor antagonist eprosartan. Finally, pilot 2D proteomic differential display experiments revealed actin cytoskeleton changes in cardiomyocytes after 48 hours of prorenin stimulation. In conclusion, prorenin exerts angiotensin-independent effects in cardiomyocytes. Prorenin-induced stimulation of the p38 MAPK/HSP27 pathway, resulting in alterations in actin filament dynamics, may underlie the severe cardiac hypertrophy that has been described previously in rats with hepatic prorenin overexpression.
Circulation | 2001
Michel Noutsias; Henry Fechner; Henriëtte de Jonge; Xiaomin Wang; Dick H. W. Dekkers; Adriaan B. Houtsmuller; Matthias Pauschinger; Jeffrey M. Bergelson; Rahat S. Warraich; Magdi H. Yacoub; Roland Hetzer; Jos M.J. Lamers; Heinz-Peter Schultheiss; Wolfgang Poller
Background The coxsackievirus and adenovirus receptor (CAR) was identified as a common cellular receptor for both viruses, but its biological and pathogenic relevance is uncertain. Knowledge of CAR localization in the human cardiovascular system is limited but important with respect to CAR-dependent viral infections and gene transfer using CAR-dependent viral vectors. Methods and Results Explanted failing hearts from 13 patients (8 with dilated cardiomyopathy [DCM] and 5 with other heart diseases [non-DCM]) and normal donor hearts (n=7) were investigated for the expression levels and subcellular localization of CAR and the adenovirus coreceptors αvβ3 and αvβ5 integrins. CAR immunoreactivity was very low in normal and non-DCM hearts, whereas strong CAR signals occurred at the intercalated discs and sarcolemma in 5 of the 8 DCM hearts (62.5%); these strong signals colocalized with both integrins. In all hearts, CAR was detectable in subendothelial layers of the vessel wall, but not on the luminal endothelia...
Nature Genetics | 2011
Erik Engelen; Umut Akinci; Jan Christian Bryne; Jun Hou; Cristina Gontan; Maaike Moen; Dorota Szumska; Christel Kockx; Wilfred van IJcken; Dick H. W. Dekkers; Jeroen Demmers; Erikjan Rijkers; Shoumo Bhattacharya; Sjaak Philipsen; Larysa Pevny; Frank Grosveld; Robbert J. Rottier; Boris Lenhard; Raymond A. Poot
The HMG-box transcription factor Sox2 plays a role throughout neurogenesis and also acts at other stages of development, as illustrated by the multiple organs affected in the anophthalmia syndrome caused by SOX2 mutations. Here we combined proteomic and genomic approaches to characterize gene regulation by Sox2 in neural stem cells. Chd7, a chromatin remodeling ATPase associated with CHARGE syndrome, was identified as a Sox2 transcriptional cofactor. Sox2 and Chd7 physically interact, have overlapping genome-wide binding sites and regulate a set of common target genes including Jag1, Gli3 and Mycn, genes mutated in Alagille, Pallister-Hall and Feingold syndromes, which show malformations also associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Indeed, we found that Chd7-haploinsufficient embryos showed severely reduced expression of Jag1 in the developing inner ear.
Hypertension | 1997
Catharina Am van Kesteren; A.H. Jan Danser; F. H. M. Derkx; Dick H. W. Dekkers; Jos M.J. Lamers; Pramod R. Saxena; Schalekamp Ma
The binding and internalization of recombinant human renin and prorenin (2500 microU/mL) and the activation of prorenin were studied in neonatal rat cardiac myocytes and fibroblasts cultured in a chemically defined medium. Surface-bound and internalized enzymes were distinguished by the addition of mannose 6-phosphate to the medium, by incubating the cells both at 37 degrees C and 4 degrees C, and by the acid-wash method. Mannose 6-phosphate inhibited the binding of renin and prorenin to the myocyte cell surface in a dose-dependent manner. At 37 degrees C, after incubation at 4 degrees C for 2 hours, 60% to 70% of cell surface-bound renin or prorenin was internalized within 5 minutes. Intracellular prorenin was activated, but extracellular prorenin was not. The half-time of activation at 37 degrees C was 25 minutes. Ammonium chloride and monensin, which interfere with the normal trafficking and recycling of internalized receptors and ligands, inhibited the activation of prorenin. Results obtained with cardiac fibroblasts were comparable to those in the myocytes. This study is the first to show experimental evidence for the internalization and activation of prorenin in extrarenal cells by a mannose 6-phosphate receptor-dependent process. Our findings may have physiological significance in light of recent experimental data indicating that angiotensin I and II are produced at cardiac and other extrarenal tissue sites by the action of renal renin and that intracellular angiotensin II can elicit important physiological responses.
Nature Genetics | 2012
Petra Schwertman; Anna Lagarou; Dick H. W. Dekkers; Anja Raams; Adriana C van der Hoek; Charlie Laffeber; Jan H.J. Hoeijmakers; Jeroen Demmers; Maria Fousteri; Wim Vermeulen; Jurgen A. Marteijn
Transcription-coupled nucleotide-excision repair (TC-NER) is a subpathway of NER that efficiently removes the highly toxic RNA polymerase II blocking lesions in DNA. Defective TC-NER gives rise to the human disorders Cockayne syndrome and UV-sensitive syndrome (UVSS). NER initiating factors are known to be regulated by ubiquitination. Using a SILAC-based proteomic approach, we identified UVSSA (formerly known as KIAA1530) as part of a UV-induced ubiquitinated protein complex. Knockdown of UVSSA resulted in TC-NER deficiency. UVSSA was found to be the causative gene for UVSS, an unresolved NER deficiency disorder. The UVSSA protein interacts with elongating RNA polymerase II, localizes specifically to UV-induced lesions, resides in chromatin-associated TC-NER complexes and is implicated in stabilizing the TC-NER master organizing protein ERCC6 (also known as CSB) by delivering the deubiquitinating enzyme USP7 to TC-NER complexes. Together, these findings indicate that UVSSA-USP7–mediated stabilization of ERCC6 represents a critical regulatory mechanism of TC-NER in restoring gene expression.
Circulation Research | 2004
J. van der Velden; Daphne Merkus; B.R. Klarenbeek; A.T. James; N.M. Boontje; Dick H. W. Dekkers; G.J.M. Stienen; Jos M.J. Lamers; Dirk J. Duncker
Myocardial infarction (MI) initiates cardiac remodeling, depresses pump function, and predisposes to heart failure. This study was designed to identify early alterations in Ca2+ handling and myofilament proteins, which may contribute to contractile dysfunction and reduced &bgr;-adrenergic responsiveness in postinfarct remodeled myocardium. Protein composition and contractile function of skinned cardiomyocytes were studied in remote, noninfarcted left ventricular (LV) subendocardium from pigs 3 weeks after MI caused by permanent left circumflex artery (LCx) ligation and in sham-operated pigs. LCx ligation induced a 19% increase in LV weight, a 69% increase in LV end-diastolic area, and a decrease in ejection fraction from 54±5% to 35±4% (all P<0.05), whereas cardiac responsiveness to exercise-induced increases in circulating noradrenaline levels was blunted. Endogenous protein kinase A (PKA) was significantly reduced in remote myocardium of MI animals, and a negative correlation (R=0.62; P<0.05) was found between cAMP levels and LV weight-to-body weight ratio. Furthermore, SERCA2a expression was 23% lower after MI compared with sham. Maximal isometric force generated by isolated skinned myocytes was significantly lower after MI than in sham (15.4±1.5 versus 19.2±0.9 kN/m2; P<0.05), which might be attributable to a small degree of troponin I (TnI) degradation observed in remodeled postinfarct myocardium. An increase in Ca2+ sensitivity of force (pCa50) was observed after MI compared with sham (&Dgr;pCa50=0.17), which was abolished by incubating myocytes with exogenous PKA, indicating that the increased Ca2+ sensitivity resulted from reduced TnI phosphorylation. In conclusion, remodeling of noninfarcted pig myocardium is associated with decreased SERCA2a and myofilament function, which may contribute to depressed LV function. The full text of this article is available online at http://circres.ahajournals.org.
Circulation Research | 2007
Monique C. de Waard; Jolanda van der Velden; Virginie Bito; Semir Ozdemir; Liesbeth Biesmans; Nicky M. Boontje; Dick H. W. Dekkers; Kees Schoonderwoerd; Hans C.H. Schuurbiers; Rini de Crom; Ger J.M. Stienen; Karin R. Sipido; Jos M.J. Lamers; Dirk J. Duncker
The extent and mechanism of the cardiac benefit of early exercise training following myocardial infarction (MI) is incompletely understood, but may involve blunting of abnormalities in Ca2+-handling and myofilament function. Consequently, we investigated the effects of 8-weeks of voluntary exercise, started early after a large MI, on left ventricular (LV) remodeling and dysfunction in the mouse. Exercise had no effect on survival, MI size or LV dimensions, but improved LV fractional shortening from 8±1 to 12±1%, and LVdP/dtP30 from 5295±207 to 5794±207 mm Hg/s (both P<0.05), and reduced pulmonary congestion. These global effects of exercise were associated with normalization of the MI-induced increase in myofilament Ca2+-sensitivity (&Dgr;pCa50=0.037). This effect of exercise was PKA-mediated and likely because of improved &bgr;1-adrenergic signaling, as suggested by the increased &bgr;1-adrenoceptor protein (48%) and cAMP levels (36%; all P<0.05). Exercise prevented the MI-induced decreased maximum force generating capacity of skinned cardiomyocytes (Fmax increased from 14.3±0.7 to 18.3±0.8 kN/m2P<0.05), which was associated with enhanced shortening of unloaded intact cardiomyocytes (from 4.1±0.3 to 7.0±0.6%; P<0.05). Furthermore, exercise reduced diastolic Ca2+-concentrations (by ∼30%, P<0.05) despite the unchanged SERCA2a and PLB expression and PLB phosphorylation status. Importantly, exercise had no effect on Ca2+-transient amplitude, indicating that the improved LV and cardiomyocyte shortening were principally because of improved myofilament function. In conclusion, early exercise in mice after a large MI has no effect on LV remodeling, but attenuates global LV dysfunction. The latter can be explained by the exercise-induced improvement of myofilament function.
Circulation | 2003
Henry Fechner; Michel Noutsias; C. Tschoepe; Kerstin Hinze; Xiaomin Wang; Felicitas Escher; Matthias Pauschinger; Dick H. W. Dekkers; Roland Vetter; Martin Paul; Jos M.J. Lamers; Heinz-Peter Schultheiss; Wolfgang Poller
Background—The coxsackievirus-adenovirus receptor (CAR) was cloned as a receptor for both viruses, but its primary biological functions and regulatory mechanisms are unknown. CAR was low in healthy adult myocardium, whereas strong CAR reexpression was observed in human dilated cardiomyopathy. The molecular mechanisms of CAR induction in cardiomyocytes are unknown. Methods and Results—We report on CAR regulation during development, CAR induction after myocardial infarction, and cell-to-cell contact–dependent CAR regulation in the rat. The high CAR expression during development in various organs decreased up to 190-fold after birth. After infarction resulting in severe cardiac dysfunction (dP/dtmax, −53%; dP/dtmin, −58%; left ventricular pressure, −45%), CAR was induced locally in cardiomyocytes of the infarct zone, where it was also expressed by capillary-like CD31+ structures and CD18+ interstitial cells, whereas it remained confined to subendothelial layers of arterioles and venules. In cultured cardiomyocytes, endothelin-1, cardiotrophin-1, leukemia-inhibiting factor, and cyclic stretch had no effect on CAR, whereas at high versus low cell density, CAR was suppressed up to 10-fold (P =0.006). Conditioned media from low- or high-density cardiomyocytes or cardiofibroblasts had no effect. Conclusions—The locally confined CAR upregulation after infarction makes induction by various humoral factors unlikely, because cardiac dysfunction results in high activities of sympathetic and renin-angiotensin systems and cytokines. The cell culture experiments identify a cell-to-cell contact–dependent mechanism of CAR regulation. Further characterization of the signals linking cell-to-cell interactions to CAR gene expression may provide insight into mechanisms and functional consequences of the generalized CAR induction in dilated cardiomyopathy, and of its local induction after myocardial infarction.
Cardiovascular Research | 1999
Catharina Am van Kesteren; Jasper J. Saris; Dick H. W. Dekkers; Jos M.J. Lamers; Pramod R. Saxena; Schalekamp Ma; A.H. Jan Danser
OBJECTIVE The hypertrophic response of cardiomyocytes exposed to mechanical stretch is assumed to depend on the release of angiotensin (Ang) II from these cells. Here we studied the synthesis of renin-angiotensin system (RAS) components by cardiac cells under basal conditions and after stretch. METHODS Myocytes and fibroblasts were isolated by enzymatic dissociation from hearts of 1-3-day-old Wistar rat strain pups, grown for 1 day in serum-supplemented medium and then cultured in a chemically defined, serum-free medium. Medium and cell lysate were collected 5 days later or after exposure of the cells to cyclic stretch for 24 h. Prorenin, renin and angiotensinogen were measured by enzyme-kinetic assay; Ang I and Ang II were measured by radioimmunoassay after SepPak extraction and HPLC separation. RESULTS Prorenin, but none of the other RAS components, could be detected in the medium of both cell types. However, its levels were low and the Ang I-generating activity corresponding with these low prorenin levels could not be inhibited by the specific rat renin inhibitor CH-732, suggesting that it was most likely due to bovine and/or horse prorenin sequestered from the serum-containing medium to which the cells had been exposed prior to the serum-free period. When incubated with Ang I, both myocytes and fibroblasts generated Ang II in a captopril-inhibitable manner. Myocyte and fibroblast cell lysates did not contain prorenin, renin, angiotensinogen, Ang I or Ang II in detectable quantities. Stretch increased myocyte protein synthesis by 20%, but was not accompanied by Ang II release into the medium. CONCLUSION Cardiac myocytes and fibroblasts do not synthesize renin, prorenin or angiotensinogen in concentrations that are detectable or, it not detectable, high enough to result in Ang II concentrations of physiological relevance. These cells do synthesize ACE, thereby allowing the synthesis of Ang II at cardiac tissue sites when renin and angiotensinogen are provided via the circulation. Ang II is not a prerequisite to observe a hypertrophic response of cardiomyocytes following stretch.