Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dick Hoekstra is active.

Publication


Featured researches published by Dick Hoekstra.


Biochemical Journal | 2004

Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis

Joanna Rejman; Volker Oberle; Inge S. Zuhorn; Dick Hoekstra

Non-phagocytic eukaryotic cells can internalize particles <1 microm in size, encompassing pathogens, liposomes for drug delivery or lipoplexes applied in gene delivery. In the present study, we have investigated the effect of particle size on the pathway of entry and subsequent intracellular fate in non-phagocytic B16 cells, using a range of fluorescent latex beads of defined sizes (50-1000 nm). Our data reveal that particles as large as 500 nm were internalized by cells via an energy-dependent process. With an increase in size (50-500 nm), cholesterol depletion increased the efficiency of inhibition of uptake. The processing of the smaller particles was significantly perturbed upon microtubule disruption, while displaying a negligible effect on that of the 500 nm beads. Inhibitor and co-localization studies revealed that the mechanism by which the beads were internalized, and their subsequent intracellular routing, was strongly dependent on particle size. Internalization of microspheres with a diameter <200 nm involved clathrin-coated pits. With increasing size, a shift to a mechanism that relied on caveolae-mediated internalization became apparent, which became the predominant pathway of entry for particles of 500 nm in size. At these conditions, delivery to the lysosomes was no longer apparent. The data indicate that the size itself of (ligand-devoid) particles can determine the pathway of entry. The clathrin-mediated pathway of endocytosis shows an upper size limit for internalization of approx. 200 nm, and kinetic parameters may determine the almost exclusive internalization of such particles along this pathway rather than via caveolae.


European Biophysics Journal | 2007

Gene delivery by cationic lipid vectors: overcoming cellular barriers

Inge S. Zuhorn; Jan B. F. N. Engberts; Dick Hoekstra

Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suffer from immunological and mutational hazards. However, the efficiency of cationic-mediated gene delivery, although often sufficient for cell biological purposes, runs seriously short from a therapeutics point of view, as realizing this objective requires a higher level of transfection than attained thus far. To develop strategies for improvement, there is not so much a need for novel delivery systems. Rather, better insight is needed into the mechanism of delivery, including lipoplex–cell surface interaction, route of internalization and concomitant escape of DNA/RNA into the cytosol, and transport into the nucleus. Current work indicates that a major obstacle involves the relative inefficient destabilization of membrane-bounded compartments in which lipoplexes reside after their internalization by the cell. Such an activity requires the capacity of lipoplexes of undergoing polymorphic transitions such as a membrane destabilizing hexagonal phase, while cellular components may aid in this process. A consequence of the latter notion is that for development of a novel generation of delivery devices, entry pathways have to be triggered by specific targeting to select delivery into intracellular compartments which are most susceptible to lipoplex-induced destabilization, thereby allowing the most efficient release of DNA, a minimal requirement for optimizing non-viral vector-mediated transfection.


Pharmaceutical Research | 2002

In Vivo Characteristics of Cationic Liposomes as Delivery Vectors for Gene Therapy

Sandrine Audouy; Lou de Leij; Dick Hoekstra; Grietje Molema

After a decade of clinical trials, gene therapy seems to have found its place between excessive ambitions and feasible aims, with encouraging results obtained in recent years. Intracellular delivery of genetic material is the key step in gene therapy. Optimization of delivery vectors is of major importance for turning gene therapy into a successful therapeutic method. Nonviral gene delivery relies mainly on the complexes formed from cationic liposomes (or cationic polymers) and DNA, i.e., lipoplexes (or polyplexes). Many lipoplex formulations have been studied, but in vivo activity is generally low compared to that of viral systems. This review gives a concise overview of studies on the application of cationic liposomes in vivo in animal models of diseases and in clinical studies. The transfection efficiency, the pharmacokinetic and pharmacodynamic properties of the lipid-DNA complexes, and potentially relevant applications for cationic liposomes are discussed. Furthermore, the toxicity of, and the induction of an inflammatory response in association with the administration of lipoplexes are described. Increasing understanding of lipoplex behavior and gene transfer capacities in vivo offers new possibilities to enhance their efficiency and paves the path to more extensive clinical applications in the future.


Biochimica et Biophysica Acta | 1976

Release of outer membrane fragments from normally growing Escherichia coli

Dick Hoekstra; Jw Vanderlaan; Loe de Leij; Bernard Witholt

A complex containing lipopolysaccharides, phospholipids and proteine separated from the medium by gelfiltration on Sephadex G-200 or by centrifugation. Electron microscopy revealed that this material is released as vesicles and membrane fragements. To determine the origin of these fragments, they were compared to outer and cytoplasmic membranes with respect to keto-deoxyoctulosonic acid, phospholipid, and protein content, phospholipid composition, fatty acid composition, protein distribution on sodium dodecyl sulfate-polyacrylamide gels, buoyant density, and content of several membrane marker enzymes. The results of this comparison indicate that the membrane fragments found in the culture supernatant of normally growing Escherichia coli consist of practically unmodified outer membrane. Possible mechanisms as to the cause of the release of outer membrane fragments, and its relationship to cell-division, are discussed.


Biophysical Journal | 2000

Lipoplex Formation under Equilibrium Conditions Reveals a Three-Step Mechanism

Volker Oberle; Udo Bakowsky; Inge S. Zuhorn; Dick Hoekstra

Cellular transfection can be accomplished by the use of synthetic amphiphiles as gene carrier system. To understand the mechanism and hence to improve the efficiency of transfection, insight into the assembly and properties of the amphiphile/gene complex is crucial. Here, we have studied the interaction between a plasmid and cationic amphiphiles, using a monolayer technique, and have examined complex assembly by atomic force microscopy. The data reveal a three-step mechanism for complex formation. In a first step, the plasmids, interacting with the monolayer, display a strong tendency of orientational ordering. Subsequently, individual plasmids enwrap themselves with amphiphile molecules in a multilamellar fashion. The size of the complex formed is determined by the supercoiled size of the plasmid, and calculations reveal that the plasmid can be surrounded by 3 to 5 bilayers of the amphiphile. The eventual size of the transfecting complex is finally governed by fusion events between individually wrapped amphiphile/DNA complexes. In bulk phase, where complex assembly is triggered by mixing amphiphilic vesicles and plasmids, a similar wrapping process is observed. However, in this case, imperfections in this process may give rise to a partial exposure of plasmids, i.e., part of the plasmid is not covered with a layer of amphiphile. We suggest that these exposed sites may act as nucleation sites for massive lipoplex clustering, which in turn may affect transfection efficiency.


Traffic | 2004

Exosome Secretion: The Art of Reutilizing Nonrecycled Proteins?

Aude de Gassart; Charles Géminard; Dick Hoekstra; Michel Vidal

Multivesicular bodies contain membrane vesicles which either undergo lysosomal digestion or are released in the extracellular environment as exosomes. Evidence is accumulating that supports a physiological role for exosomes in, for example, antigen presentation or removal of transferrin receptor during reticulocyte development. Here, inspired by observations on exosomal release from reticulocytes, we discuss the potential involvement of the so‐called ESCRT mechanism in the entrapment of both lysosomal and exosomal cargo within the intralumenal vesicles of multivesicular bodies. We propose that this mechanism operates at different sites in the endocytic itinerary in different cells, thereby providing a tool for directional sorting. We also explore the possibility that the efficiency of sorting of molecules into exosomes increases when the recycling kinetics of molecules decreases, exosomal sorting being favored by intermolecular interactions occurring within lipid domains, or with protein webs, that slow lateral mobility. These considerations are mirrored in the context of current knowledge on the mechanism of protein sorting for degradation in lysosomes, and the hijacking of such mechanisms by some retroviruses for particle budding.


Biophysical Journal | 2001

Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles via Peptide-Induced Fusion

Nicoletta Kahya; Eve-Isabelle Pécheur; Wim P. de Boeij; Douwe A. Wiersma; Dick Hoekstra

In this work, we present a protocol to reconstitute membrane proteins into giant unilamellar vesicles (GUV) via peptide-induced fusion. In principle, GUV provide a well-defined lipid matrix, resembling a close-to-native state for biophysical studies, including optical microspectroscopy, of transmembrane proteins at the molecular level. Furthermore, reconstitution in this manner would also eliminate potential artifacts arising from secondary interactions of proteins, when reconstituted in planar membranes supported on solid surfaces. However, assembly procedures of GUV preclude direct reconstitution. Here, for the first time, a method is described that allows the controlled incorporation of membrane proteins into GUV. We demonstrate that large unilamellar vesicles (LUV, diameter 0.1 microm), to which the small fusogenic peptide WAE has been covalently attached, readily fuse with GUV, as revealed by monitoring lipid and contents mixing by fluorescence microscopy. To monitor contents mixing, a new fluorescence-based enzymatic assay was devised. Fusion does not introduce changes in the membrane morphology, as shown by fluorescence correlation spectroscopy. Analysis of fluorescence confocal imaging intensity revealed that approximately 6 to 10 LUV fused per microm(2) of GUV surface. As a model protein, bacteriorhodopsin (BR) was reconstituted into GUV, using LUV into which BR was incorporated via detergent dialysis. BR did not affect GUV-LUV fusion and the protein was stably inserted into the GUV and functionally active. Fluorescence correlation spectroscopy experiments show that BR inserted into GUV undergoes unrestricted Brownian motion with a diffusion coefficient of 1.2 microm(2)/s. The current procedure offers new opportunities to address issues related to membrane-protein structure and dynamics in a close-to-native state.


Biochemical Journal | 2002

Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions

Fuxin Shi; Luc Wasungu; Anita Nomden; Marc C. A. Stuart; Evgeny Polushkin; Jan B. F. N. Engberts; Dick Hoekstra

Cationic liposomes are applied to transfer oligonucleotides (ODNs) into cells to regulate gene expression for gene therapeutic or cell biological purposes. In vivo, poly(ethylene glycol) (PEG)-lipid derivatives are employed to stabilize and prolong the circulation lifetime of nucleic acid-containing particles, and to improve targeting strategies. In this study, we have studied the effects of PEG-lipid analogues, i.e. PEG coupled to either phosphatidylethanolamine (PE) or ceramide, on cationic-lipid-DNA complex (lipoplex) assembly and the mechanism of cationic-lipid-mediated delivery of ODNs in vitro. Inclusion of 10 mol% PEG-PE in ODN lipoplexes inhibited their internalization in Chinese hamster ovary cells by more than 70%. The intracellular fraction remained entrapped in the endosomal/lysosomal pathway, and no release of ODNs was apparent. Similar observations were made for complexes prepared from liposomes that contained PEG-ceramides. Interestingly, delivery resumed when lipoplexes had been externally coated with PEG-ceramides. In this case, the kinetics of delivery were dependent on the length of the ceramide acyl chain, consistent with a requirement for the PEG-lipid to dissociate from the complex. Moreover, although the chemical nature of the PEG-ceramides distinctly affected the net internalization of the complexes, impediment of delivery was largely related to an inhibitory effect of the PEG-lipid on the release of ODNs from the endosomal compartment. Cryo-electron microscopy and small-angle X-ray scattering revealed that the PEG-lipids stabilize the lamellar phase of the lipoplexes, while their acyl-chain-length-dependent transfer from the complex enables adaptation of the hexagonal phase. Within the endosomal compartment, this transition appears to be instrumental in causing the dissociation and cytosolic release of the ODNs for their nuclear homing.


Biophysical Journal | 2002

Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency.

Inge S. Zuhorn; Volker Oberle; Willy H. Visser; Jan B. F. N. Engberts; Udo Bakowsky; Evgeny Polushkin; Dick Hoekstra

Cationic lipids are widely used for gene transfection, but their mechanism of action is still poorly understood. To improve this knowledge, a structure-function study was carried out with two pyridinium-based lipid analogs with identical headgroups but differing in alkyl chain (un)saturation, i.e., SAINT-2 (diC18:1) and SAINT-5 (diC18:0). Although both amphiphiles display transfection activity per se, DOPE strongly promotes SAINT-2-mediated transfection, but not that of SAINT-5, despite the fact that DOPE effectively facilitates plasmid dissociation from either lipoplex. This difference appears to correlate with membrane stiffness, dictated by the cationic lipid packing in the donor liposomes, which governs the kinetics of lipid recruitment by the plasmid upon lipoplex assembly. Because of its interaction with the relatively rigid SAINT-5 membranes, the plasmid becomes inappropriately condensed, which results in formation of structurally deformed lipoplexes. This structural deformation does not affect its cellular uptake but, rather, hampers plasmid translocation across endosomal and/or nuclear membranes. This is inferred from the observation that both lipoplexes effectively translocate much smaller oligonucleotides into cells. In fact, SAINT-5/DOPE-mediated transfection is greatly improved when, before lipoplex assembly, the plasmid is stabilized by condensation with polylysine. The results emphasize a role of the structural shape of the plasmid in gaining cytosolic/nuclear access. Moreover, it has been proposed that such a translocation is promoted when the lipoplex adopts the hexagonal phase, and data are presented that demonstrate that the lamellar SAINT-5/DOPE lipoplex adopts such a phase after its interaction with acidic phospholipid-containing membranes.


Journal of Gene Medicine | 2000

Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability.

Sandrine Audouy; Grietje Molema; Lou de Leij; Dick Hoekstra

Cationic liposomes belong to the family of non‐viral vectors for gene delivery. Despite several drawbacks, such as low efficiency compared to viruses and inactivation by serum, cationic liposomes remain a promising tool for gene therapy. Therefore further investigation of the mechanism of transfection and improvement of formulations are warranted.

Collaboration


Dive into the Dick Hoekstra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sven C.D. van IJzendoorn

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jan Willem Kok

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Maier

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge