Didier Hans
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Didier Hans.
Osteoporosis International | 2001
Christopher F. Njeh; Didier Hans; J. Li; B. Fan; Thomas Fuerst; Y. Q. He; E. Tsuda-Futami; Ying Lu; C. Y. Wu; Harry K. Genant
Abstract: Quantitative ultrasound (QUS) is now accepted as a useful tool in the management of osteoporosis. There are a variety of QUS devices clinically available with a number of differences among them, including their coupling methods, parameter calculation algorithms and sites of measurement. This study evaluated the abilities of six calcaneal QUS devices to discriminate between normal and hip-fractured subjects compared with the established method of dual-energy X-ray absorptiometry (DXA). The short-term and mid-term precisions of these devices were also determined. Thirty-five women (mean age 74.5 ± 7.9 years) who had sustained a hip fracture within the past 3 years, and 35 age-matched controls (75.8 ± 5.6 years) were recruited. Ultrasound measurements were acquired using six ultrasound devices: three gel-coupled and three water-coupled devices. Bone mineral density was measured at the hip using DXA. Discrimination of fracture patients versus controls was assessed using logistic regression analysis (expressed as age- and BMI-adjusted odds ratios per standard deviation decrease with 95% confidence interval) and receiver operating characteristics (ROC) curve analysis. Measurement precision was standardized to the biological range (sCV). The sCV ranged from 3.14% to 5.5% for speed of sound (SOS) and from 2.45% to 6.01% for broadband ultrasound attenuation (BUA). The standardized medium-term precision ranged from 4.33% to 8.43% for SOS and from 2.77% to 6.91% for BUA. The pairwise Pearson correlation coefficients between different devices was highly significant (SOS, r= 0.79–0.93; BUA, r= 0.71–0.92). QUS variables correlated weakly, though significantly, with femoral BMD (SOS, r= 0.30–0.55; BUA, r= 0.35–0.61). The absolute BUA and SOS values varied among devices. The gel-coupled devices generally had a higher SOS than water-coupled devices. Bone mineral density (BMD) and BUA were weakly correlated with weight (r= 0.48–0.57 for BMD and r= 0.18–0.54 for BUA), whereas SOS was independent of weight. All the QUS devices gave similar, statistically significant hip fracture discrimination for both SOS and BUA measures. The odds ratios for SOS (2.1–2.8) and BUA (2.4–3.4) were comparable to those for femoral BMD (2.6–3.5), as were the area under the curve (SOS, 0.65–0.71; BUA, 0.62–0.71; BMD, 0.65–0.74) from ROC analysis. Within the limitation of the sample size all devices show similar diagnostic sensitivity.
Calcified Tissue International | 1999
Didier Hans; C. Y. Wu; Christopher F. Njeh; Shoujun Zhao; Peter Augat; David C. Newitt; Thomas M. Link; Ying Lu; Sharmila Majumdar; Harry K. Genant
Abstract. Studies have indicated that quantitative ultrasound (QUS) variables may be influenced by the mechanical properties of bone which in turn are determined by bones material and structural properties. However, from these studies it is unclear what role density, elasticity, and structure play in determining velocity. Eighteen defatted, 12-mm cubic trabecular bone specimens were cut from cadaveric specimens. Amplitude-dependent speed of sound (SOS) using a single point QUS system was assessed in three orthogonal axes. Magnetic resonance images were obtained, from which measures of apparent trabeuclar structure were derived. The specimens were nondestructively tested in compression along three orthogonal axes defined by the sides of the cubes. The elastic modulus (in the three directions) and the strength (in one direction) were determined. Trabecular BMD was measured by quantitative computed tomography. SOS varied significantly with direction of measurement, with the highest value in the axial direction (axial:1715 m/s, sagittal: 1662 m/second, and coronal: 1676 m/s). SOS of each of the three axes was generally associated with the various mechanical (r = 0.30–0.87), density (r = 0.81–0.93), and bone structural variables (0.3–0.8). However, after adjusting the SOS correlations by density, only the correlation with elasticity remained significant in the coronal direction. BMD alone explained 88–93% of variance in SOS whereas in the multivariate model, BMD plus elasticity and/or anisotropic variables explained 96–98% of the variance in SOS. Variability of SOS is explained mostly by density and to a small extent by elasticity or anisotropy. Since only 2–6% of the variance of the QUS measurement is not explained by density and elasticity, one could conclude that the remaining variance reflects other properties of bone or perhaps simply measurement error. Evidence that these other properties may be structure related is only found in the anisotropy of QUS parameter.
Journal of the American Geriatrics Society | 2001
Ursula G. Kyle; Laurence Genton; Didier Hans; Véronique L. Karsegard; Jean-Pierre Michel; Daniel O. Slosman; Claude Pichard
OBJECTIVES: To evaluate body composition parameters, including fat‐free mass (FFM), appendicular skeletal muscle mass (ASMM), relative skeletal muscle mass (RSM) index, body cell mass (BCM), BCM index, total body potassium (TBK), fat mass, percentage fat mass (FM), and their differences between age groups and to evaluate the frequency of sarcopenia in healthy older subjects
Applied Radiation and Isotopes | 1999
Christopher F. Njeh; Thomas Fuerst; Didier Hans; Glen Blake; Harry K. Genant
Osteoporosis is a systematic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue which leads to diminished biomechanical competence of the skeleton and low-trauma or atraumatic fractures. Due to increased awareness of the impact of osteoporosis on the elderly population, the use of bone densitometric techniques is becoming more widespread. Considerable progress has been made in the development of non-invasive methods for the assessment of the skeleton. While DXA and QCT are commonly used techniques, the popularity of other approaches such as RA, SXA and QUS is gaining grounds. QCT has an advantage over the other techniques in its ability to measure the true volumetric density of trabecular or cortical bone. We therefore present an overview of these current techniques for bone mineral density (BMD) measurements. In the second section we discuss the radiation doses incurred in BMD measurements by patients and methods for reducing patient and staff radiation exposure are given. Studies of radiation dose to patient from DXA confirms that patient dose is small (0.08-4.6 muSv) compared to that given by many other investigations involving ionizing radiation. Fan beam technology with increased resolution has resulted in increase patient dose radiation dose (6.7-31 muSv) but this is still relatively small. Carrying vertebral morphometry using DXA also incurs less radiation dose (< 60 muSv) than standard lateral radiographs QCT has radiation dose (25-360 muSv) comparable to simple radiological examination such as chest X-ray but lower than imaging CT. Radiation dose from other techniques such as RA and SXA are in the same order of magnitude as pencil beam DXA. For pencil beam DXA and SXA systems the time average dose to staff from scatter is very low even with the operator sitting as close as 1 m from the patient during measurement. However the scatter dose from fan beam DXA systems is considerable higher and approaches limits set by regulator bodies for occupational exposure.
Journal of Clinical Densitometry | 2000
Reinhard Barkmann; Edvard Kantorovich; Chaim Singal; Didier Hans; Harry K. Genant; Martin Heller; C. C. Glüer
We investigated a new multisite quantitative ultrasound device that measures the acoustic velocity in axial transmission mode along the cortex. Using a prototype of the Omnisense (Sunlight Ultrasound Technologies, Rehovot, Israel), we tested the performance of this instrument at four sites of the skeleton: radius, ulna, metacarpal, and phalanx. Intraobserver (interobserver) precision errors ranged from 0.2% to 0.3% (0.3% to 0.7%) for triplicate measurements with repositioning. Fracture discrimination was tested by comparing a group of 34 women who had previously suffered a fracture of the hip, spine, ankle, or forearm to a group of 28 healthy women who had not suffered a fracture. Age-adjusted standardized odds ratios ranged from 1.6 to 4.5. Except for the ulna the sites showed a significant fracture discrimination (p < 0.01). The areas under the receiver operating curves (ROC) curves were from 0.88 to 0.89 for radius, metacarpal, and phalanx. A combination of the results from the three sites showed a significant increase of the ROC area to 0.95 (p < 0. 05). Our results show promising performance of this new device. The ability to measure a large variety of sites and the potential to combine these measurements are promising with regard to optimizing fracture risk assessment.
Journal of Bone and Mineral Research | 1999
Didier Hans; S. K. Srivastav; C. Singal; Reinhard Barkmann; Chris Njeh; E. Kantorovich; Claus-C. Glüer; Harry K. Genant
There is a growing interest in the use of quantitative ultrasound (QUS) measurements as an alternative to current radiation‐based bone densitometry techniques for the noninvasive assessment of fracture risk. While most of the commercialized ultrasound devices measure only single predefined peripheral skeletal sites, the Omnisense prototype (Sunlight Ltd., Israel) can be used on multiple bones, including the spinous processes. In this study, we examined the ability of speed of sound measured at the calcaneus, distal third and ultradistal radius, proximal third phalanx, metacarpal, capitate, patella, and the posterior process of the thoracic spine to differentiate subjects with hip fractures from normal controls. Seventy‐nine postmenopausal Caucasian Israeli women who had sustained an atraumatic fracture of the proximal femur within the last 6 months were recruited from the local population (mean age 80 ± 8.9 years). As controls, 295 postmenopausal Caucasian Israeli women without osteoporotic fractures were also included (mean age 70 ± 8.7 years). Discrimination of hip fractures with QUS at all ultrasound sites was highly statistically significant (p < 0.01) (odds ratios [ORs] = 1.4–3.0; area under the ROC curve [AUC] 77–92%), except for the hand metacarpal. Distal radius and calcaneus measurements (ORs = 2.4 and 3.0) were the best discriminators of hip fracture patients from controls. Using a forward selective linear regression model, the discriminator values of combined assessment at two sites were investigated. There was moderate improvement in diagnostic value, but the best combination was the calcaneus with the distal radius, which improved the AUC by 3% and raised both the sensitivity and specificity to 94%. These data demonstrate the encouraging potential of improving discrimination of hip fracture by using multiple‐site ultrasonic measurements.
Medical Engineering & Physics | 1999
Christopher F. Njeh; Didier Hans; C Wu; E Kantorovich; M Sister; T Fuerst; Harry K. Genant
To measure the speed of sound (SOS), most quantitative ultrasound (QUS) devices use the transmission mode, whereby two transducers are placed on opposite sides of the sample. This mode is limited to a few specific skeletal sites because of the varying configuration of bone geometry and varying amounts of overlying soft tissue at most other sites. The aim of this study was to address the dependence of SOS measured along the sample on the thickness and composition of the bone sample. Bovine samples from mid-femur and trochanter, and perspex phantoms were used. We prepared the perspex samples in the shapes of blocks and cylinders to investigate the effect of wall thickness on SOS. The thickness of the blocks was decreased in decrements of 1 mm; a 22 mm diameter hole was drilled through the cylindrical samples and the hole size was gradually increased. The second configuration was also used with the bovine samples. For each experimental set-up five SOS measurements were acquired, with the probe aligned along the sample and a mean value computed. All measurements were taken with castor oil as the coupling agent, and in the cylindrical cases, the oil was used to fill the tube. The measurement precision determined as the root mean square coefficient of variation (RMSCV) was determined to be 0.14% and 0.65% for perspex and bovine samples respectively. The measured SOS on the perspex phantom (2760+/-4 m/s) was within the published values for bulk velocity. It was observed that for both perspex and bovine samples the SOS was independent of sample wall thickness greater than the wavelength (2.2 mm, 2.7 mm and 3.5 mm for perspex, trochanter and mid-femur respectively). The SOS decreased with sample wall thickness smaller than the wavelength in concordance with theoretical predictions. The SOS values obtained for bovine samples reflected either totally cortical (mid-femur) or a composite of cortical and cancellous bone (trochanter).
Journal of Clinical Densitometry | 2013
Renaud Winzenrieth; Franck Michelet; Didier Hans
The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93 μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488 μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711 ≤ r² ≤ 0.752) and trabecular number (0.584 ≤ r² ≤ 0.648) and negative for trabecular space (-0.407 ≤ r² ≤ -0.491), up to a pixel size of 1023 μm. In addition, TBSμCT values were strongly correlated between each other (0.77 ≤ r² ≤ 0.96). Study results show that the correlations between TBSμCT at 93 μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.
Journal of Bone and Mineral Research | 2006
Marc-Antoine Krieg; Jacques Cornuz; Christiane Ruffieux; Guy van Melle; Daniel Büche; Maximilian A. Dambacher; Didier Hans; Florian Hartl; Hansjörg Häuselmann; Marius E. Kraenzlin; Kurt Lippuner; Maurus Neff; Pierro Pancaldi; René Rizzoli; Franco Tanzi; Robert Theiler; Alan Tyndall; Claus Wimpfheimer; Peter Burckhardt
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women ≥70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not.
Seminars in Nuclear Medicine | 1997
Claus-C. Glüer; Michael Jergas; Didier Hans
Peripheral measurement techniques have been the first to be developed for the assessment of osteoporosis, and they remain useful. Besides traditional approaches such as radiographic absorptiometry (RA), radiogrammetry, and single-photon absorptiometry (SPA), new peripheral approaches have been developed that offer powerful ways to assess skeletal status in osteoporosis. These include single x-ray absorptiometry (SXA), peripheral dual x-ray absorptiometry (pDXA), peripheral quantitative computed tomography (pQCT), quantitative ultrasound (QUS) techniques, and magnetic resonance imaging (MRI) approaches. This review describes the current role of peripheral imaging techniques vis-à-vis their central imaging counterparts. Peripheral measurement techniques are attractive because equipment cost is substantially lower, radiation exposure is small, and the devices require less space and sometimes are even portable. Additionally, QUS and MRI offer the potential to measure aspects of bone status beyond the limits of bone densitometry. Peripheral techniques represent important diagnostic methods for the assessment of osteoporosis.