Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Didier Jollivet is active.

Publication


Featured researches published by Didier Jollivet.


Molecular Ecology | 2009

Comparative phylogeography among hydrothermal vent species along the East Pacific Rise reveals vicariant processes and population expansion in the South

Sophie Plouviez; Timothy M. Shank; Baptiste Faure; Claire Daguin-Thiébaut; Frédérique Viard; François Lallier; Didier Jollivet

The use of sequence polymorphism from individual mitochondrial genes to infer past demography has recently proved controversial because of the recurrence of selective sweeps acting over genes and the need for unlinked multilocus data sets. However, comparative analyses using several species for one gene and/or multiple genes for one species can serve as a test for potential selective effects and clarify our understanding of historical demographic effects. This study compares nucleotide polymorphisms in mitochondrial cytochrome oxidase I across seven deep‐sea hydrothermal vent species that live along the volcanically active East Pacific Rise. Approximate Bayesian Computation (ABC) method, developed to trace shared vicariant events across species pairs, indicates the occurrence of two across species divergence times, and suggests that the present geographical patterns of genetic differentiation may be explained by two periods of significant population isolation. The oldest period dates back 11.6 Ma and is associated with the vent limpet Lepetodrilus elevatus, while the most recent period of isolation is 1.3 Ma, which apparently affected all species examined and coincides with a transition zone across the equator. Moreover, significant negative Tajima’s D and star‐like networks were observed for all southern lineages, suggesting that these lineages experienced a concomitant demographic and geographical expansion about 100 000–300 000 generations ago. This expansion may have initiated from a wave of range expansions during the secondary colonization of new sites along the Southern East Pacific Rise (founder effects below the equator) or recurrent bottleneck events because of the increase of eruptive phases associated with the higher spreading rates of the ridge in this region.


PLOS ONE | 2013

Thermal Limit for Metazoan Life in Question: In Vivo Heat Tolerance of the Pompeii Worm

Juliette Ravaux; Gérard Hamel; Magali Zbinden; Aurélie Tasiemski; Isabelle Boutet; Nelly Léger; Arnaud Tanguy; Didier Jollivet; Bruce Shillito

The thermal limit for metazoan life, expected to be around 50°C, has been debated since the discovery of the Pompeii worm Alvinella pompejana, which colonizes black smoker chimney walls at deep-sea vents. While indirect evidence predicts body temperatures lower than 50°C, repeated in situ temperature measurements depict an animal thriving at temperatures of 60°C and more. This controversy was to remain as long as this species escaped in vivo investigations, due to irremediable mortalities upon non-isobaric sampling. Here we report from the first heat-exposure experiments with live A. pompejana, following isobaric sampling and subsequent transfer in a laboratory pressurized aquarium. A prolonged (2 hours) exposure in the 50–55°C range was lethal, inducing severe tissue damages, cell mortalities and triggering a heat stress response, therefore showing that Alvinella’s upper thermal limit clearly is below 55°C. A comparison with hsp70 stress gene expressions of individuals analysed directly after sampling in situ confirms that Alvinella pompejana does not experience long-term exposures to temperature above 50°C in its natural environment. The thermal optimum is nevertheless beyond 42°C, which confirms that the Pompeii worm ranks among the most thermotolerant metazoans.


PLOS ONE | 2012

Proteome Adaptation to High Temperatures in the Ectothermic Hydrothermal Vent Pompeii Worm

Didier Jollivet; Jean Yves Mary; Nicolas Gagnière; Arnaud Tanguy; Eric Fontanillas; Isabelle Boutet; Stéphane Hourdez; Béatrice Segurens; Jean Weissenbach; Olivier Poch; Odile Lecompte

Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular ‘adaptive’ strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively ‘high’ temperatures and thus a novelty in thermophilic metazoans.


Current Zoology | 2016

Current hypotheses to explain genetic chaos under the sea

Bjarki Eldon; Florentine Riquet; Jon M. Yearsley; Didier Jollivet; Thomas Broquet

Chaotic genetic patchiness (CGP) refers to surprising patterns of spatial and temporal genetic structure observed in some marine species at a scale where genetic variation should be efficiently homogenized by gene flow via larval dispersal. Here we review and discuss 4 mechanisms that could generate such unexpected patterns: selection, sweepstakes reproductive success, collective dispersal, and temporal shifts in local population dynamics. First, we review examples where genetic differentiation at specific loci was driven by diversifying selection, which was historically the first process invoked to explain CGP. Second, we turn to neutral demographic processes that may drive genome-wide effects, and whose effects on CGP may be enhanced when they act together. We discuss how sweepstakes reproductive success accelerates genetic drift and can thus generate genetic structure, provided that gene flow is not too strong. Collective dispersal is another mechanism whereby genetic structure can be maintained regardless of dispersal intensity, because it may prevent larval cohorts from becoming entirely mixed. Theoretical analyses of both the sweepstakes and the collective dispersal ideas are presented. Finally, we discuss an idea that has received less attention than the other ones just mentioned, namely temporal shifts in local population dynamics.


BMC Genomics | 2010

Insights into metazoan evolution from alvinella pompejana cDNAs

Nicolas Gagnière; Didier Jollivet; Isabelle Boutet; Yann Brelivet; Didier Busso; Corinne Da Silva; Françoise Gaill; Dominique Higuet; Stéphane Hourdez; Bernard Knoops; François Lallier; Emmanuelle Leize-Wagner; Jean Yves Mary; Dino Moras; Emmanuel Perrodou; Jean-François Rees; Béatrice Segurens; Bruce Shillito; Arnaud Tanguy; Jean-Claude Thierry; Jean Weissenbach; Patrick Wincker; Franck Zal; Olivier Poch; Odile Lecompte

BackgroundAlvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures.ResultsWe have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity.ConclusionsOur study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2009

Global depression in gene expression as a response to rapid thermal changes in vent mussels.

Isabelle Boutet; Arnaud Tanguy; Dominique Le Guen; Patrice Piccino; Stéphane Hourdez; Pierre Legendre; Didier Jollivet

Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30°C over a 48 h recovery period at 5°C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a ‘cold’ stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin.


PLOS ONE | 2013

A new barrier to dispersal trapped old genetic clines that escaped the Easter Microplate tension zone of the Pacific vent mussels.

Sophie Plouviez; Baptiste Faure; Dominique Le Guen; François Lallier; Nicolas Bierne; Didier Jollivet

Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S.


Marine Genomics | 2015

Transcriptomic response of the hydrothermal mussel Bathymodiolus azoricus in experimental exposure to heavy metals is modulated by the Pgm genotype and symbiont content

Marion Bougerol; Isabelle Boutet; Dominique LeGuen; Didier Jollivet; Arnaud Tanguy

Hydrothermal vent mussels belonging to the genus Bathymodiolus dominate communities at hydrothermal sites of the Mid-Atlantic Ridge. The mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills and evolves in naturally highly metal contaminated environments. In the context of investigations on metal tolerance/effect in B. azoricus, we focused our work on the short-term adaptive response (15days) of mussels to different metals exposure at a molecular level using metal concentrations chosen to mimic natural situations at three vents sites. The expression of a set of 38 genes involved in different steps of the metal uptake, detoxication and various metabolisms was analysed by qPCR. Mussels were also genotyped at 10 enzyme loci to explore the relationships among natural genetic variation and gene expression. Relation between symbiont content (both sulfur-oxidizing and methanogen bacteria) and gene expression was also analysed. Our study demonstrated the influence of metal cocktail composition and time exposure on the transcriptome regulation with a specific pattern of regulation observed for the three metal cocktail tested. We also evidenced the significant influence of some specific Pgm genotype on the global gene expression in our experimental populations and a general trend of a higher gene expression in individuals carrying a high symbiont content.


Molecular Biology and Evolution | 2010

Origin and Evolution of the Unique Tetra-Domain Hemoglobin from the Hydrothermal Vent Scale Worm Branchipolynoe

J. Projecto-Garcia; N. Zorn; Didier Jollivet; Stephen W. Schaeffer; François Lallier; Stépahne Hourdez

Hemoglobin is the most common respiratory pigment in annelids. It can be intra or extracellular, and this latter type can form large multimeric complexes. The hydrothermal vent scale worms Branchipolynoe symmytilida and Branchipolynoe seepensis express an extracellular tetra-domain hemoglobin (Hb) that is unique in annelids. We sequenced the gene for the single-domain and tetra-domain globins in these two species. The single-domain gene codes for a mature protein of 137 amino acids, and the tetra-domain gene codes for a mature protein of 552 amino acids. The single-domain gene has a typical three exon/two intron structure, with introns located at their typical positions (B12.2 and G7.0). This structure is repeated four times in the tetra-domain gene, with no bridge introns or linker sequences between domains. The phylogenetic position of Branchipolynoe globins among known annelid globins revealed that, although extracellular, they cluster within the annelid intracellular globins clade, suggesting that the extracellular state of these Hbs is the result of convergent evolution. The tetra-domain structure likely resulted from two tandem duplications, domain 1 giving rise to domain 2 and after this the two-domain gene duplicated to produce domains 3 and 4. The high O(2) affinity of Branchipolynoe extracellular globins may be explained by the two key residues (B10Y and E7Q) in the heme pocket in each of the domains of the single and tetra-domain globins, which have been shown to be essential in the oxygen-avid Hb from the nematode Ascaris suum. This peculiar globin evolutionary path seems to be very different from other annelid extracellular globins and is most likely the product of evolutionary tinkering associated with the strong selective pressure to adapt to chronic hypoxia that characterizes hydrothermal vents.


Ecology and Evolution | 2016

Divergent ecological histories of two sister Antarctic krill species led to contrasted patterns of genetic diversity in their heat‐shock protein (hsp70) arsenal

Claire Papot; Kévin Cascella; Jean‐Yves Toullec; Didier Jollivet

Abstract The Arctic and the Antarctic Peninsula are currently experiencing some of the most rapid rates of ocean warming on the planet. This raises the question of how the initial adaptation to extreme cold temperatures was put in place and whether or not directional selection has led to the loss of genetic variation at key adaptive systems, and thus polar species’ (re)adaptability to higher temperatures. In the Southern Ocean, krill represents the most abundant fauna and is a critical member at the base of the Antarctic food web. To better understand the role of selection in shaping current patterns of polymorphisms, we examined genetic diversity of the cox‐1 and hsp70 genes by comparing two closely related species of Euphausiid that differ in ecology. Results on mtcox‐1 agreed with previous studies, indicating high and similar effective population sizes. However, a coalescent‐based approach on hsp70 genes highlighted the role of positive selection and past demographic changes in their recent evolution. Firstly, some form of balancing selection was acting on the inducible isoform C, which reflected the maintenance of an ancestral adaptive polymorphism in both species. Secondly, E. crystallorophias seems to have lost most of its hsp70 diversity because of a population crash and/or directional selection to cold. Nonsynonymous diversities were always greater in E. superba, suggesting that it might have evolved under more heterogeneous conditions. This can be linked to species’ ecology with E. superba living in more variable pelagic conditions, while E. crystallorophias is strictly associated with continental shelves and sea ice.

Collaboration


Dive into the Didier Jollivet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Poch

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Stephen W. Schaeffer

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge