Didier Métivier
Institut Gustave Roussy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Didier Métivier.
Nature Medicine | 2007
Michel Obeid; Antoine Tesniere; François Ghiringhelli; Gian Maria Fimia; Lionel Apetoh; Jean Luc Perfettini; Maria Castedo; Grégoire Mignot; Theoharis Panaretakis; Noelia Casares; Didier Métivier; Nathanael Larochette; Peter van Endert; Fabiola Ciccosanti; Mauro Piacentini; Laurence Zitvogel; Guido Kroemer
Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.
Molecular and Cellular Biology | 2005
Patricia Boya; Rosa-Ana Gonzalez-Polo; Noelia Casares; Jean-Luc Perfettini; Philippe Dessen; Nathanael Larochette; Didier Métivier; Daniel Meley; Sylvie Souquere; Tamotsu Yoshimori; Gérard Pierron; Patrice Codogno; Guido Kroemer
ABSTRACT Mammalian cells were observed to die under conditions in which nutrients were depleted and, simultaneously, macroautophagy was inhibited either genetically (by a small interfering RNA targeting Atg5, Atg6/Beclin 1-1, Atg10, or Atg12) or pharmacologically (by 3-methyladenine, hydroxychloroquine, bafilomycin A1, or monensin). Cell death occurred through apoptosis (type 1 cell death), since it was reduced by stabilization of mitochondrial membranes (with Bcl-2 or vMIA, a cytomegalovirus-derived gene) or by caspase inhibition. Under conditions in which the fusion between lysosomes and autophagosomes was inhibited, the formation of autophagic vacuoles was enhanced at a preapoptotic stage, as indicated by accumulation of LC3-II protein, ultrastructural studies, and an increase in the acidic vacuolar compartment. Cells exhibiting a morphology reminiscent of (autophagic) type 2 cell death, however, recovered, and only cells with a disrupted mitochondrial transmembrane potential were beyond the point of no return and inexorably died even under optimal culture conditions. All together, these data indicate that autophagy may be cytoprotective, at least under conditions of nutrient depletion, and point to an important cross talk between type 1 and type 2 cell death pathways.
Journal of Experimental Medicine | 2005
Noelia Casares; Marie O. Pequignot; Antoine Tesniere; François Ghiringhelli; Stephan Roux; Nathalie Chaput; Elise Schmitt; Ahmed Hamai; Sandra Hervas-Stubbs; Michel Obeid; Frédéric Coutant; Didier Métivier; Evelyne Pichard; Pierre Aucouturier; Gérard Pierron; Carmen Garrido; Laurence Zitvogel; Guido Kroemer
Systemic anticancer chemotherapy is immunosuppressive and mostly induces nonimmunogenic tumor cell death. Here, we show that even in the absence of any adjuvant, tumor cells dying in response to anthracyclins can elicit an effective antitumor immune response that suppresses the growth of inoculated tumors or leads to the regression of established neoplasia. Although both antracyclins and mitomycin C induced apoptosis with caspase activation, only anthracyclin-induced immunogenic cell death was immunogenic. Caspase inhibition by Z-VAD-fmk or transfection with the baculovirus inhibitor p35 did not inhibit doxorubicin (DX)-induced cell death, yet suppressed the immunogenicity of dying tumor cells in several rodent models of neoplasia. Depletion of dendritic cells (DCs) or CD8+T cells abolished the immune response against DX-treated apoptotic tumor cells in vivo. Caspase inhibition suppressed the capacity of DX-killed cells to be phagocytosed by DCs, yet had no effect on their capacity to elicit DC maturation. Freshly excised tumors became immunogenic upon DX treatment in vitro, and intratumoral inoculation of DX could trigger the regression of established tumors in immunocompetent mice. These results delineate a procedure for the generation of cancer vaccines and the stimulation of anti-neoplastic immune responses in vivo.
Nature Medicine | 2006
Julien Taieb; Nathalie Chaput; Cédric Ménard; Lionel Apetoh; Evelyn Ullrich; Mathieu Bonmort; Marie O. Pequignot; Noelia Casares; Magali Terme; Caroline Flament; Paule Opolon; Yann Lécluse; Didier Métivier; Elena Tomasello; Eric Vivier; François Ghiringhelli; François Martin; David Klatzmann; Thierry Poynard; Thomas Tursz; Graça Raposo; Hideo Yagita; Bernard Ryffel; Guido Kroemer; Laurence Zitvogel
The interferon (IFN)-γ–induced TRAIL effector mechanism is a vital component of cancer immunosurveillance by natural killer (NK) cells in mice. Here we show that the main source of IFN-γ is not the conventional NK cell but a subset of B220+Ly6C− dendritic cells, which are atypical insofar as they express NK cell-surface molecules. Upon contact with a variety of tumor cells that are poorly recognized by NK cells, B220+NK1.1+ dendritic cells secrete high levels of IFN-γ and mediate TRAIL-dependent lysis of tumor cells. Adoptive transfer of these IFN-producing killer dendritic cells (IKDCs) into tumor-bearing Rag2−/−Il2rg−/− mice prevented tumor outgrowth, whereas transfer of conventional NK cells did not. In conclusion, we identified IKDCs as pivotal sensors and effectors of the innate antitumor immune response.
Journal of Experimental Medicine | 2003
Patricia Boya; Karine Andreau; Delphine Poncet; Naoufal Zamzami; Jean-Luc Perfettini; Didier Métivier; David M. Ojcius; Marja Jäättelä; Guido Kroemer
A number of diseases are due to lysosomal destabilization, which results in damaging cell loss. To investigate the mechanisms of lysosomal cell death, we characterized the cytotoxic action of two widely used quinolone antibiotics: ciprofloxacin (CPX) or norfloxacin (NFX). CPX or NFX plus UV light (NFX*) induce lysosomal membrane permeabilization (LMP), as detected by the release of cathepsins from lysosomes. Inhibition of the lysosomal accumulation of CPX or NFX suppresses their capacity to induce LMP and to kill cells. CPX- or NFX-triggered LMP results in caspase-independent cell death, with hallmarks of apoptosis such as chromatin condensation and phosphatidylserine exposure on the plasma membrane. LMP triggers mitochondrial membrane permeabilization (MMP), as detected by the release of cytochrome c. Both CPX and NFX* cause Bax and Bak to adopt their apoptotic conformation and to insert into mitochondrial membranes. Bax−/− Bak−/− double knockout cells fail to undergo MMP and cell death in response to CPX- or NFX-induced LMP. The single knockout of Bax or Bak (but not Bid) or the transfection-enforced expression of mitochondrion-targeted (but not endoplasmic reticulum–targeted) Bcl-2 conferred protection against CPX (but not NFX*)-induced MMP and death. Altogether, our data indicate that mitochondria are indispensable for cell death initiated by lysosomal destabilization.
Journal of Immunological Methods | 2002
Maria Castedo; Karine F. Ferri; Thomas Roumier; Didier Métivier; Naoufal Zamzami; Guido Kroemer
Mitochondria undergo two major changes during early apoptosis. On the one hand, the outer mitochondrial membrane becomes permeable to proteins, resulting in the release of soluble intermembrane proteins (SIMPs) from the mitochondrion. On the other hand, the inner mitochondrial membrane transmembrane potential (DeltaPsi(m)) is reduced. These changes occur in most, if not all, models of cell death and can be taken advantage of to detect apoptosis at an early stage. Here, we delineate methods for the detection of alterations in the DeltaPsi(m), based on the incubation of cells with cationic lipophilic fluorochromes, the uptake of which is driven by the DeltaPsi(m). Certain DeltaPsi(m)-sensitive dyes can be combined with other fluorochromes to detect simultaneously cellular viability, plasma membrane exposure of phosphatidylserine residues, or the mitochondrial production of reactive oxygen species (ROS). In addition, we describe an immunofluorescence method for the detection of two functionally important proteins translocating from mitochondria, namely, the caspase co-activator cytochrome c and the caspase-independent death effector apoptosis inducing factor (AIF).
The FASEB Journal | 2001
Markus Loeffler; Eric Daugas; Santos A. Susin; Naoufal Zamzami; Didier Métivier; Anna-Liisa Nieminen; Josef M. Penninger; Guido Kroemer
The complete AIF cDNA comprising the ammo‐terminal mitochondrial localization sequence (MLS) and the oxidoreductase domain has been fused in its carboxyl terminus to enhanced green fluorescent protein (GFP), thereby engineering an AIF‐GFP fusion protein that is selectively targeted to the mitochondrial intermembrane space. Upon induction of apoptosis, the AIF‐GFP protein translocates together with cyto¬chrome c (Cyt‐c) to the extramitochondrial compart¬ment. Microinjection of recombinant AIF leads to the release of AIF‐GFP and Cyt‐c‐GFP, indicating that ectopic AIF can favor permeabilization of the outer mitochondrial membrane. These mitochondrial effects of AIF are caspase independent, whereas the Cyt‐c‐microinjection induced translocation of AIF‐GFP and Cyt‐c‐GFP is suppressed by the pan‐caspase inhibitor Z‐VAD.fmk. Upon prolonged culture, transfection‐enforced overexpression of AIF results in spontaneous translocation of AIF‐GFP from mitochondria, nuclear chromatin condensation, and cell death. These effects are caspase independent and do not rely on the oxidoreductase function of AIF. Spontaneous AIF‐GFP translocation and subsequent nuclear apoptosis can be retarded by overexpression of a Bcl‐2 protein selec¬tively targeted to mitochondria, but not by a Bcl‐2 protein targeted to the endoplasmic reticulum. Over¬expression of a mutant AIF protein in which the MLS has been deleted (AIF Δ 1–100) results in the primary cytosolic accumulation of AIF. AIF Δ 1–100‐induced cell death is suppressed by neither Z‐VAD.fmk or by Bcl‐2. Thus, extramitochondrially targeted AIF is a dominant cell death inducer.—Loeffler, M., Daugas, E., Susin, S. A., Zamzami, N., Metivier, D., Nieminen, A.‐L., Brothers, G., Penninger, J. M., Kroemer, G. Dominant cell death induction by extramitochondrially targeted apoptosis‐inducing factor. FASEB J. 15, 758‐767 (2001)
Cell Death & Differentiation | 2002
Jan G; Belzacq As; Delphine Haouzi; Rouault A; Didier Métivier; Guido Kroemer; Catherine Brenner
The genus Propionibacterium is composed of dairy and cutaneous bacteria which produce short-chain fatty acids (SCFA), mainly propionate and acetate, by fermentation. Here, we show that P. acidipropionici and freudenreichii, two species which can survive in the human intestine, can kill two human colorectal carcinoma cell lines by apoptosis. Propionate and acetate were identified as the major cytotoxic components secreted by the bacteria. Bacterial culture supernatants as well as pure SCFA induced typical signs of apoptosis including a loss of mitochondrial transmembrane potential, the generation of reactive oxygen species, caspase-3 processing, and nuclear chromatin condensation. The oncoprotein Bcl-2, which is known to prevent apoptosis via mitochondrial effects, and the cytomegalovirus-encoded protein vMIA, which inhibits apoptosis and interacts with the mitochondrial adenine nucleotide translocator (ANT), both inhibited cell death induced by propionibacterial SCFA, suggesting that mitochondria and ANT are involved in the cell death pathway. Accordingly, propionate and acetate induced mitochondrial swelling when added to purified mitochondria in vitro. Moreover, they specifically permeabi-lize proteoliposomes containing ANT, indicating that ANT can be a critical target in SCFA-induced apoptosis. We suggest that propionibacteria could constitute probiotics efficient in digestive cancer prophylaxis via their ability to produce apoptosis-inducing SCFA.
Oncogene | 2001
Anne-Sophie Belzacq; Chahrazed El Hamel; Helena La Vieira; Isabel Cohen; Delphine Haouzi; Didier Métivier; Philippe Marchetti; Catherine Brenner; Guido Kroemer
An increasing number of experimental chemotherapeutic agents induce apoptosis by directly triggering mitochondrial membrane permeabilization (MMP). Here we examined MMP induced by lonidamine, arsenite, and the retinoid derivative CD437. Cells overexpressing the cytomegalovirus-encoded protein vMIA, a protein which interacts with the adenine nucleotide translocator, were strongly protected against the MMP-inducing and apoptogenic effects of lonidamine, arsenite, and CD437. In a cell-free system, lonidamine, arsenite, and CD437 induced the permeabilization of ANT proteoliposomes, yet had no effect on protein-free liposomes. The ANT-dependent membrane permeabilization was inhibited by the two ANT ligands ATP and ADP, as well as by recombinant Bcl-2 protein. Lonidamine, arsenite, and CD437, added to synthetic planar lipid bilayers containing ANT, elicited ANT channel activities with clearly distinct conductance levels of 20±7, 100±30, and 47±7 pS, respectively. Altering the ATP/ADP gradient built up on the inner mitochondrial membrane by inhibition of glycolysis and/or oxidative phosphorylation differentially modulated the cytocidal potential of lonidamine, arsenite, and CD437. Inhibition of F0F1ATPase without glycolysis inhibition sensitized to lonidamine-induced cell death. In contrast, only the combined inhibition of glycolysis plus F0F1ATPase sensitized to arsenite-induced cell death. No sensitization to cell death induction by CD437 was achieved by glucose depletion and/or oligomycin addition. These results indicate that ANT is a target of lonidamine, arsenite, and CD437 and unravel an unexpected heterogeneity in the mode of action of these three compounds.
Cell Cycle | 2009
Isabelle Martins; Antoine Tesniere; Oliver Kepp; Mickaël Michaud; Frederic Schlemmer; Laura Senovilla; Claire Séror; Didier Métivier; Jean-Luc Perfettini; Laurence Zitvogel; Guido Kroemer
Chemotherapy can induce anticancer immune responses. In contrast to a widely extended prejudice, apoptotic cell death is often more efficient in eliciting a protective anticancer immune response than necrotic cell death. Recently, we have found that purinergic receptors of the P2X7 type are required for the anticancer immune response induced by chemotherapy. ATP is the endogenous ligand that has the highest affinity for P2X7. Therefore, we investigated the capacity of a panel of chemotherapeutic agents to induce ATP release from cancer cells. Here, we describe that multiple distinct anticancer drugs reduce the intracellular concentration of ATP before and during the manifestation of apoptotic characteristics such as the dissipation of the mitochondrial transmembrane potential and the exposure of phosphatidylserine residues on the plasma membrane. Indeed, as apoptosis progresses, intracellular ATP concentrations decrease, although even advanced-stage apoptotic cells still contain sizeable ATP levels. Only when cells enter secondary necrosis, the ATP concentration falls to undetectable levels. Concomitantly, a wide range of chemotherapeutic agents causes the release of ATP into the extracellular space as they induce tumor cell death. Hence, ATP release is a general correlate of apoptotic cell death induced by conventional anticancer therapies.