Didier Rotticci
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Didier Rotticci.
Journal of Medicinal Chemistry | 2012
Britt-Marie Swahn; Karin Kolmodin; Sofia Karlström; Stefan Berg; Peter Söderman; Jörg Holenz; Johan Lindström; M. Sundstrom; Jacob Kihlström; Can Slivo; Lars I. Andersson; David Pyring; Didier Rotticci; Liselotte Öhberg; Annika Kers; Krisztián Bogár; Fredrik von Kieseritzky; Margareta Bergh; Lise-Lotte Olsson; Juliette Janson; Susanna Eketjäll; Biljana Georgievska; Fredrik Jeppsson; Johanna Fälting
The evaluation of a series of aminoisoindoles as β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors and the discovery of a clinical candidate drug for Alzheimers disease, (S)-32 (AZD3839), are described. The improvement in permeability properties by the introduction of fluorine adjacent to the amidine moiety, resulting in in vivo brain reduction of Aβ40, is discussed. Due to the basic nature of these compounds, they displayed affinity for the human ether-a-go-go related gene (hERG) ion channel. Different ways to reduce hERG inhibition and increase hERG margins for this series are described, culminating in (S)-16 and (R)-41 showing large in vitro margins with BACE1 cell IC(50) values of 8.6 and 0.16 nM, respectively, and hERG IC(50) values of 16 and 2.8 μM, respectively. Several compounds were advanced into pharmacodynamic studies and demonstrated significant reduction of β-amyloid peptides in mouse brain following oral dosing.
Journal of Biological Chemistry | 2012
Tomas Borgegard; Anders Juréus; Fredrik Olsson; Susanne Rosqvist; Alan Sabirsh; Didier Rotticci; Kim Paulsen; Rebecka Klintenberg; Hongmei Yan; Magnus Waldman; Kia Strömberg; Johan Nord; Jonas S. Johansson; Anna Regner; Santiago Parpal; David Malinowsky; Ann-Cathrin Radesäter; Tingsheng Li; Rajeshwar Singh; Håkan Eriksson; Johan Lundkvist
Background: γ-Secretase modulators (GSMs) hold potential as disease modifiers in Alzheimer disease; however, their mechanism of action is not completely understood. Results: Second generation in vivo active GSMs were described and shown to modulate Aβ production via a non-APP targeting mechanism, different from the NSAIDs class of GSMs. Conclusion: A growing class of second generation GSMs appears to target γ-secretase and displays a different mechanism of action compared with first generation GSMs. Significance: The identification of in vivo active non-APP targeting second generation GSMs may facilitate the development of novel therapeutics against AD. γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a 3H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.
Bioorganic & Medicinal Chemistry Letters | 2012
Britt-Marie Swahn; Jörg Holenz; Jacob Kihlström; Karin Kolmodin; Johan Lindström; Niklas Plobeck; Didier Rotticci; Fernando Sehgelmeble; M. Sundstrom; Stefan Berg; Johanna Fälting; Biljana Georgievska; Susanne Gustavsson; Jan Neelissen; Margareta Ek; Lise-Lotte Olsson
The evaluation of a series of bicyclic aminoimidazoles as potent BACE-1 inhibitors is described. The crystal structures of compounds 14 and 23 in complex with BACE-1 reveal hydrogen bond interactions with the protein important for achieving potent inhibition. The optimization of permeability and efflux properties of the compounds is discussed as well as the importance of these properties for attaining in vivo brain efficacy. Compound (R)-25 was selected for evaluation in vivo in wild type mice and 1.5h after oral co-administration of 300μmol/kg (R)-25 and efflux inhibitor GF120918 the brain Aβ40 level was reduced by 17% and the plasma Aβ40 level by 76%.
ChemMedChem | 2012
Fernando Sehgelmeble; Juliette Janson; Colin Ray; Susanne Rosqvist; Susanne Gustavsson; Linda I. Nilsson; Alexander Minidis; Jörg Holenz; Didier Rotticci; Johan Lundkvist; Per I. Arvidsson
The proof of the pudding: A proof-of-concept study using γ-secretase inhibitors as a model has shown that sulfonimidamides act as bioisosteres for sulfonamides. Detailed in vitro and in vivo profiling reveal that the sulfonimidamide motif imparts desirable properties such as decreased lipophilicity and plasma protein binding, accompanied by increased solubility. Our data support a wider use of this unique functional group in the design of new pharmacologically active agents.
Bioorganic & Medicinal Chemistry Letters | 2012
Yevgeni Besidski; William Brown; Johan Bylund; Michael Dabrowski; Sophie Dautrey; Magali Harter; Lucy Horoszok; Yin Hu; Dean Johnson; Shawn Johnstone; Paul Jones; Sandrine Leclerc; Karin Kolmodin; Inger Kers; Maryse Labarre; Denis Labrecque; Jennifer M.A. Laird; Therese Lundström; John Martino; Mickaël Maudet; Alexander Munro; Martin Nylöf; Andrea Penwell; Didier Rotticci; Andis Slaitas; Anna K. Sundgren-Andersson; Mats Svensson; Gitte Terp; Huascar Villanueva; Christopher Walpole
Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.
Archive | 2006
Per I. Arvidsson; Erwan Arzel; Jeremy N. Burrows; Helena Gyback; Tobias Rein; Didier Rotticci; Peter Söderman
Archive | 2006
Per I. Arvidsson; Erwan Arzel; Jeremy N. Burrows; Martina Claesson; Colin Ray; Tobias Rein; Didier Rotticci; Peter Söderman
Archive | 2007
Jeremy N. Burrows; Fernando Huerta; Fredrik Lake; Torben Pedersen; Tobias Rein; Didier Rotticci; Karin Staaf; Ulrika Yngve
Archive | 2004
Yevgeni Besidski; Inger Kers; Martin Nylöf; Didier Rotticci; Andis Slaitas; Mats Svensson
Archive | 2009
Jörg Holenz; Sofia Karlström; Jacob Kihlström; Karin Kolmodin; Johan Lindström; Laszlo Rakos; Didier Rotticci; Peter Söderman; M. Sundstrom; Britt-Marie Swahn; Berg Stefan Von