Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dido Lenze is active.

Publication


Featured researches published by Dido Lenze.


Nature Genetics | 2012

Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing

Julia Richter; Matthias Schlesner; Steve Hoffmann; Markus Kreuz; Ellen Leich; Birgit Burkhardt; Maciej Rosolowski; Ole Ammerpohl; Rabea Wagener; Stephan H. Bernhart; Dido Lenze; Monika Szczepanowski; Maren Paulsen; Simone Lipinski; Robert B. Russell; Sabine Adam-Klages; Gordana Apic; Alexander Claviez; Dirk Hasenclever; Volker Hovestadt; Nadine Hornig; Jan O. Korbel; Dieter Kube; David Langenberger; Chris Lawerenz; Jasmin Lisfeld; Katharina Meyer; Simone Picelli; Jordan Pischimarov; Bernhard Radlwimmer

Burkitt lymphoma is a mature aggressive B-cell lymphoma derived from germinal center B cells. Its cytogenetic hallmark is the Burkitt translocation t(8;14)(q24;q32) and its variants, which juxtapose the MYC oncogene with one of the three immunoglobulin loci. Consequently, MYC is deregulated, resulting in massive perturbation of gene expression. Nevertheless, MYC deregulation alone seems not to be sufficient to drive Burkitt lymphomagenesis. By whole-genome, whole-exome and transcriptome sequencing of four prototypical Burkitt lymphomas with immunoglobulin gene (IG)-MYC translocation, we identified seven recurrently mutated genes. One of these genes, ID3, mapped to a region of focal homozygous loss in Burkitt lymphoma. In an extended cohort, 36 of 53 molecularly defined Burkitt lymphomas (68%) carried potentially damaging mutations of ID3. These were strongly enriched at somatic hypermutation motifs. Only 6 of 47 other B-cell lymphomas with the IG-MYC translocation (13%) carried ID3 mutations. These findings suggest that cooperation between ID3 inactivation and IG-MYC translocation is a hallmark of Burkitt lymphomagenesis.


Nature | 2013

Synthetic lethal metabolic targeting of cellular senescence in cancer therapy

Jan R. Dörr; Yong Yu; Maja Milanovic; Gregor Beuster; Christin Zasada; J. Henry M. Däbritz; Jan Lisec; Dido Lenze; Anne Gerhardt; Katharina Schleicher; Susanne Kratzat; Bettina Purfürst; Stefan Walenta; Wolfgang Mueller-Klieser; Markus Gräler; Michael Hummel; Ulrich Keller; Andreas K. Buck; Bernd Dörken; Lothar Willmitzer; Maurice Reimann; Stefan Kempa; Soyoung Lee; Clemens A. Schmitt

Activated oncogenes and anticancer chemotherapy induce cellular senescence, a terminal growth arrest of viable cells characterized by S-phase entry-blocking histone 3 lysine 9 trimethylation (H3K9me3). Although therapy-induced senescence (TIS) improves long-term outcomes, potentially harmful properties of senescent tumour cells make their quantitative elimination a therapeutic priority. Here we use the Eµ-myc transgenic mouse lymphoma model in which TIS depends on the H3K9 histone methyltransferase Suv39h1 to show the mechanism and therapeutic exploitation of senescence-related metabolic reprogramming in vitro and in vivo. After senescence-inducing chemotherapy, TIS-competent lymphomas but not TIS-incompetent Suv39h1– lymphomas show increased glucose utilization and much higher ATP production. We demonstrate that this is linked to massive proteotoxic stress, which is a consequence of the senescence-associated secretory phenotype (SASP) described previously. SASP-producing TIS cells exhibited endoplasmic reticulum stress, an unfolded protein response (UPR), and increased ubiquitination, thereby targeting toxic proteins for autophagy in an acutely energy-consuming fashion. Accordingly, TIS lymphomas, unlike senescence models that lack a strong SASP response, were more sensitive to blocking glucose utilization or autophagy, which led to their selective elimination through caspase-12- and caspase-3-mediated endoplasmic-reticulum-related apoptosis. Consequently, pharmacological targeting of these metabolic demands on TIS induction in vivo prompted tumour regression and improved treatment outcomes further. These findings unveil the hypercatabolic nature of TIS that is therapeutically exploitable by synthetic lethal metabolic targeting.


Nature Medicine | 2010

Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma

Björn Lamprecht; Korden Walter; Stephan Kreher; Raman Kumar; Michael Hummel; Dido Lenze; Karl Köchert; Mohamed Amine Bouhlel; Julia Richter; Eric Soler; Ralph Stadhouders; Korinna Jöhrens; Wurster Kd; David F. Callen; Michael F Harte; Maciej Giefing; Rachael Barlow; Harald Stein; Ioannis Anagnostopoulos; Martin Janz; Peter N. Cockerill; Reiner Siebert; Bernd Dörken; Constanze Bonifer; Stephan Mathas

Mammalian genomes contain many repetitive elements, including long terminal repeats (LTRs), which have long been suspected to have a role in tumorigenesis. Here we present evidence that aberrant LTR activation contributes to lineage-inappropriate gene expression in transformed human cells and that such gene expression is central for tumor cell survival. We show that B cell–derived Hodgkins lymphoma cells depend on the activity of the non-B, myeloid-specific proto-oncogene colony-stimulating factor 1 receptor (CSF1R). In these cells, CSF1R transcription initiates at an aberrantly activated endogenous LTR of the MaLR family (THE1B). Derepression of the THE1 subfamily of MaLR LTRs is widespread in the genome of Hodgkins lymphoma cells and is associated with impaired epigenetic control due to loss of expression of the corepressor CBFA2T3. Furthermore, we detect LTR-driven CSF1R transcripts in anaplastic large cell lymphoma, in which CSF1R is known to be expressed aberrantly. We conclude that LTR derepression is involved in the pathogenesis of human lymphomas, a finding that might have diagnostic, prognostic and therapeutic implications.


Blood | 2010

Immunoblastic morphology but not the immunohistochemical GCB/nonGCB classifier predicts outcome in diffuse large B-cell lymphoma in the RICOVER-60 trial of the DSHNHL

German Ott; Marita Ziepert; Wolfram Klapper; Heike Horn; Monika Szczepanowski; Heinz-Wolfram Bernd; Christoph Thorns; Alfred C. Feller; Dido Lenze; Michael Hummel; Harald Stein; Hans-Konrad Müller-Hermelink; Matthias Frank; Martin-Leo Hansmann; Thomas F. E. Barth; Peter Möller; Sergio Cogliatti; Michael Pfreundschuh; Norbert Schmitz; Lorenz Trümper; Markus Loeffler; Andreas Rosenwald

The survival of diffuse large B-cell lymphoma patients varies considerably, reflecting the molecular diversity of tumors. In view of the controversy whether cytologic features, immunohistochemical markers or gene expression signatures may capture this molecular diversity, we investigated which features provide prognostic information in a prospective trial in the R-CHOP treatment era. Within the cohort of DLBCLs patients treated in the RICOVER-60 trial of the German High-Grade Lymphoma Study Group (DSHNHL), we tested the prognostic impact of IB morphology in 949 patients. The expression of immunohistochemical markers CD5, CD10, BCL2, BCL6, human leukocyte antigen (HLA)-DR, interferon regulatory factor-4/multiple myeloma-1 (IRF4/MUM1), and Ki-67 was assessed in 506 patients. Expression of the immunohistochemical markers tested was of modest, if any, prognostic relevance. Moreover, the Hans algorithm using the expression patterns of CD10, BCL6, and interferon regulatory factor-4/multiple myeloma-1 failed to show prognostic significance in the entire cohort as well as in patient subgroups. IB morphology, however, emerged as a robust, significantly adverse prognostic factor in multivariate analysis, and its diagnosis showed a good reproducibility among expert hematopathologists. We conclude, therefore, that IB morphology in DLBCL is likely to capture some of the adverse molecular alterations that are currently not detectable in a routine diagnostic setting, and that its recognition has significant prognostic power.


Proceedings of the National Academy of Sciences of the United States of America | 2013

PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma

Matthias Pfeifer; Michael Grau; Dido Lenze; Sören-Sebastian Wenzel; Annette Wolf; Brigitte Wollert-Wulf; Kerstin Dietze; Hendrik Nogai; Benjamin Storek; Hannelore Madle; Bernd Dörken; Martin Janz; Stephan Dirnhofer; Peter Lenz; Michael Hummel; Alexandar Tzankov; Georg Lenz

Diffuse large B-cell lymphoma (DLBCL) represents a heterogeneous diagnostic category with distinct molecular subtypes that can be defined by gene expression profiling. However, even within these defined subtypes, heterogeneity prevails. To further elucidate the pathogenesis of these entities, we determined the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) in 248 primary DLBCL patient samples. These analyses revealed that loss of PTEN was detectable in 55% of germinal center B-cell-like (GCB) DLBCLs, whereas this abnormality was found in only 14% of non-GCB DLBCL patient samples. In GCB DLBCL, the PTEN status was inversely correlated with activation of the oncogenic PI3K/protein kinase B (AKT) pathway in both DLBCL cell lines and primary patient samples. Reexpression of PTEN induced cytotoxicity in PTEN-deficient GCB DLBCL cell line models by inhibiting PI3K/AKT signaling, indicating an addiction to this pathway in this subset of GCB DLBCLs. PI3K/AKT inhibition induced down-regulation of the transcription factor MYC. Reexpression of MYC rescued GCB DLBCL cells from PTEN-induced toxicity, identifying a regulatory mechanism of MYC expression in DLBCL. Finally, pharmacologic PI3K inhibition resulted in toxicity selectively in PTEN-deficient GCB DLBCL lines. Collectively, our results indicate that PTEN loss defines a PI3K/AKT-dependent GCB DLBCL subtype that is addicted to PI3K and MYC signaling and suggest that pharmacologic inhibition of PI3K might represent a promising therapeutic approach in these lymphomas.


Haematologica | 2014

Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma

Sietse M. Aukema; Markus Kreuz; Christian W. Kohler; Maciej Rosolowski; Dirk Hasenclever; Michael Hummel; Ralf Küppers; Dido Lenze; German Ott; Christiane Pott; Julia Richter; Andreas Rosenwald; Monika Szczepanowski; Carsten Schwaenen; Harald Stein; Heiko Trautmann; Swen Wessendorf; Lorenz Trümper; Markus Loeffler; Rainer Spang; Philip M. Kluin; Wolfram Klapper; Reiner Siebert

Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC+) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC+ lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC+-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6+/MYC+ and BCL2+/MYC+ double-hit lymphomas. BCL2+/MYC+ double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC+ lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC+ lymphomas sharing various molecular characteristics.


Blood | 2011

Macrophage development from HSCs requires PU.1-coordinated microRNA expression

Saeed Ghani; Pia Riemke; Jörg Schönheit; Dido Lenze; Jürgen Stumm; Maarten Hoogenkamp; Anne Karine Lagendijk; Sven Heinz; Constanze Bonifer; Jeroen Bakkers; Salim Abdelilah-Seyfried; Michael Hummel; Frank Rosenbauer

The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation.


BMC Cancer | 2010

Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

Robert Klopfleisch; Dido Lenze; Michael Hummel; Achim D. Gruber

BackgroundSimilar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent.MethodsMessenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer.ResultsMetastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors.ConclusionsMetastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets.


Leukemia | 2011

The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma

Dido Lenze; Lorenzo Leoncini; Michael Hummel; Stefano Volinia; C. G. Liu; Teresa Amato; G. De Falco; J. Githanga; Heike Horn; Joshua Nyagol; German Ott; J. Palatini; Michael Pfreundschuh; Emily Rogena; Andreas Rosenwald; Reiner Siebert; Carlo M. Croce; Harald Stein

Sporadic Burkitt lymphoma (sBL) can be delineated from diffuse large B-cell lymphoma (DLBCL) by a very homogeneous mRNA expression signature. However, it remained unclear whether all three BL variants—sBL, endemic BL (eBL) and human immunodeficiency virus-associated BL (HIV-BL)—represent a uniform biological entity despite their differences in geographical occurrence, association with immunodeficiency and/or incidence of Epstein–Barr virus (EBV) infection. To address this issue, we generated micro RNA (miRNA) profiles from 18 eBL, 31 sBL and 15 HIV-BL cases. In addition, we analyzed the miRNA expression of 86 DLBCL to determine whether miRNA profiles recapitulate the molecular differences between BL and DLBCL evidenced by mRNA profiling. A signature of 38 miRNAs containing MYC regulated and nuclear factor-kB pathway-associated miRNAs was obtained that differentiated BL from DLBCL. The miRNA profiles of sBL and eBL displayed only six differentially expressed miRNAs, whereas HIV and EBV infection had no impact on the miRNA profile of BL. In conclusion, miRNA profiling confirms that BL and DLBCL represent distinct lymphoma categories and demonstrates that the three BL variants are representatives of the same biological entity with only marginal miRNA expression differences between eBL and sBL.


Genes, Chromosomes and Cancer | 2009

Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status

Carsten Schwaenen; Andreas Viardot; Hilmar Berger; Thomas F. E. Barth; Stefan Bentink; Hartmut Döhner; Martina Enz; Alfred C. Feller; Martin Leo Hansmann; Michael Hummel; Hans A. Kestler; Wolfram Klapper; Markus Kreuz; Dido Lenze; Markus Loeffler; Peter Möller; Hans Konrad Müller-Hermelink; German Ott; Maciej Rosolowski; Andreas Rosenwald; Sandra Ruf; Reiner Siebert; Rainer Spang; Harald Stein; Lorenz Truemper; Peter Lichter; Martin Bentz; Swen Wessendorf

Follicular lymphoma (FL) is characterized by a large number of chromosomal aberrations. However, their exact genomic extension and involved target genes remain to be determined. For this purpose, we used array‐based intermediate‐high resolution genomic profiling in combination with Affymetrix™ gene expression analysis. Tumor specimens from 128 FL patients were analyzed for the presence of genomic aberrations and the results were correlated to clinical data sets and mRNA expression levels. In 114 (89%) of the 128 analyzed cases, a total of 688 genomic aberrations (384 gains/amplifications and 304 losses) were detected. Frequent genomic aberrations were: −1p36 (18%), +2p15 (24%), −3q (14%), −6q (25%), +7p (19%), +7q (23%), +8q (14%), −9p (16%), −11q (15%), +12q (20%), −13q (11%), −17p (16%), +18p (18%), and +18q (28%). Critical segments of these imbalances were delineated to genomic fragments with a minimum size down to 0.2 Mb. By comparison of these with mRNA gene expression data, putative candidate genes were identified. Moreover, we found that deletions affecting the tumor suppressor gene CDKN2A/B on 9p21 were detected in nontransformed FL grade I–II. For this aberration as well as for −6q25 and −6q26, an association with inferior survival was observed.

Collaboration


Dive into the Dido Lenze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heike Horn

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge