Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieder Moechars is active.

Publication


Featured researches published by Dieder Moechars.


Molecular Endocrinology | 2008

Obestatin Induction of Early-Response Gene Expression in Gastrointestinal and Adipose Tissues and the Mediatory Role of G Protein-Coupled Receptor, GPR39

Jian Zhang; Holger Jahr; Chin-Wei Luo; Cynthia Klein; Kristof Van Kolen; Luc Ver Donck; Ananya De; Esther Baart; Jing Li; Dieder Moechars; Aaron J. W. Hsueh

Obestatin was identified as a brain/gut peptide hormone encoded by the ghrelin gene and found to interact with the G protein-coupled receptor, GPR39. We investigated target cells for obestatin based on induction of an early-response gene c-fos in different tissues. After ip injection of obestatin, c-fos staining was found in the nuclei of gastric mucosa, intestinal villi, white adipose tissues, hepatic cords, and kidney tubules. Immunohistochemical analyses using GPR39 antibodies further revealed cytoplasmic staining in these tissues. In cultured 3T3-L1 cells, treatment with obestatin, but not motilin, induced c-fos expression. In these preadipocytes, treatment with obestatin also stimulated ERK1/2 phosphorylation. Because phenotypes of GPR39 null mice are partially consistent with a role of GPR39 in mediating obestatin actions, we hypothesized that inconsistencies on the binding of iodinated obestatin to GPR39 are due to variations in the bioactivity of iodinated obestatin. We obtained monoiodoobestatin after HPLC purification and demonstrated its binding to jejunum, stomach, ileum, pituitary, and white adipose tissue. Furthermore, human embryonic kidney 293T cells transfected with plasmids encoding human or mouse GPR39 or a human GPR39 isoform, but not the ghrelin receptor, exhibited high-affinity binding to monoiodoobestatin. Binding studies using jejunum homogenates and recombinant GPR39 revealed obestatin-specific displacement curves. Furthermore, treatment with obestatin induced c-fos expression in gastric mucosa of wild-type, but not GPR39 null, mice, underscoring a mediating role of this receptor in obestatin actions. The present findings indicate that obestatin is a metabolic hormone capable of binding to GPR39 to regulate the functions of diverse gastrointestinal and adipose tissues.


European Journal of Pharmacology | 2009

Modulation of group II metabotropic glutamate receptor (mGlu2) elicits common changes in rat and mice sleep-wake architecture.

Abdellah Ahnaou; Frank M. Dautzenberg; Helena Geys; Hassan Julien Imogai; Antoine Gibelin; Dieder Moechars; Thomas Steckler; Wilhelmus Drinkenburg

Compiling pharmacological evidence implicates metabotropic glutamate mGlu(2) receptors in the regulation of emotional states and suggests positive modulators as a novel therapeutic approach of Anxiety/Depression and Schizophrenia. Here, we investigated subcutaneous effects of the metabotropic glutamate mGlu(2/3) agonist (LY354740) on sleep-wake architecture in rat. To confirm the specific effects on rapid eye movement (REM) sleep were mediated via metabotropic glutamate mGlu(2) receptors, we characterized the sleep-wake cycles in metabotropic glutamate mGlu(2) receptor deficient mice (mGlu(2)R(-/-)) and their arousal response to LY354740. We furthermore examined effects on sleep behavior in rats of the positive allosteric modulator, biphenyl-indanone A (BINA) alone and in combination with LY354740 at sub-effective doses. LY354740 (1, 3 and 10 mg/kg) dose-dependently suppressed REM sleep and prolonged its onset latency. Metabotropic glutamate mGlu(2)R(-/-) and their wild type (WT) littermates exhibited similar spontaneous sleep-wake phenotype, while LY354740 (10 mg/kg) significantly affected REM sleep variables in WT but not in the mutant. In rats, BINA (1, 3, 10, 20, 40 mg/kg) dose-dependently suppressed REM sleep, lengthened its onset latency and slightly enhanced passive waking. Additionally, combined treatment elicited a synergistic action on REM sleep variables. Our findings show common changes of REM sleep variables following modulation of metabotropic glutamate mGlu(2) receptor and support an active role of this receptor in the regulation of REM sleep. The synergistic action of BINA on LY354740s effects on sleep pattern implies that positive modulators would tune the endogenous glutamate tone suggesting potential benefit in the treatment of psychiatric disorders, in which REM sleep overdrive is manifested.


The Journal of Nuclear Medicine | 2010

Preclinical Evaluation of 18F-JNJ41510417 as a Radioligand for PET Imaging of Phosphodiesterase-10A in the Brain

Sofie Celen; Michel Koole; Meri De Angelis; Ivan Sannen; Satish K. Chitneni; Jesús Alcázar; Stefanie Dedeurwaerdere; Dieder Moechars; Mark Schmidt; Alfons Verbruggen; Xavier Langlois; Koen Van Laere; José Ignacio Andrés; Guy Bormans

Phosphodiesterases are enzymes that inactivate the intracellular second messengers 3′,5′-cyclic adenosine-monophosphate and/or cyclic guanosine-monophosphate. Of all 11 known phosphodiesterase families, phosphodiesterase-10A (PDE10A) has the most restricted distribution, with high expression in the striatum. PDE10A inhibitors are pursued as drugs for treatment of neuropsychiatric disorders. We have synthesized and evaluated 18F-JNJ41510417 as a selective and high-affinity radioligand for in vivo brain imaging of PDE10A using PET. Methods: The biodistribution of 18F-JNJ41510417 was evaluated in rats. Rat plasma and perfused brain homogenates were analyzed by high-performance liquid chromatography to quantify radiometabolites. Dynamic small-animal PET was performed in rats and in wild-type and PDE10A knock-out mice and compared with ex vivo autoradiography. Blocking and displacement experiments were performed using the nonradioactive analog and other selective PDE10A inhibitors. Results: Tissue distribution studies showed predominant hepatobiliary excretion, sufficient brain uptake (0.56 ± 0.00 percentage injected dose at 2 min after tracer injection), and continuous accumulation of the tracer in the striatum over time; rapid washout of nonspecific binding from other brain regions was observed. Polar radiometabolites were detected in plasma and brain tissue. Dynamic small-animal PET showed continuous tracer accumulation in the striatum, with rapid decline in the cortex and cerebellum. Pretreatment and chase experiments with PDE10A inhibitors showed that the tracer binding to PDE10A was specific and reversible. Imaging in PDE10A knock-out and wild-type mice further confirmed that binding in the striatum was specific for PDE10A. Conclusion: Experiments in rats and PDE10A knock-out mice indicate that 18F-JNJ41510417 binds specifically and reversibly to PDE10A in the striatum, suggesting that this new fluorinated quinoline derivative is a promising candidate for in vivo imaging of PDE10A using PET.


Journal of Neurochemistry | 2003

Characterization of amyloid β peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein

Stefan Pype; Dieder Moechars; Lieve Dillen; Marc Mercken

Alzheimers disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid β peptides (Aβ) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme‐linked immunosorbant assays (ELISAs) specific for either human or rodent Aβ, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Aβ1–42/1–40 were in the order of 2–3 for human and 8–9 for mouse peptides, indicating preferential deposition of Aβ42. We also determined the identity and relative levels of other Aβ variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl‐ or the amino‐terminus were Aβ1–38 and Aβ11–42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP‐London transgenic mice consist of aggregates of multiple human and mouse Aβ variants, and the human variants that we identified were previously detected in brain extracts of AD patients.


Bioinformatics | 2007

The high-level similarity of some disparate gene expression measures

Nandini Raghavan; An De Bondt; Willem Talloen; Dieder Moechars; Hinrich Göhlmann; Dhammika Amaratunga

Probe-level data from Affymetrix GeneChips can be summarized in many ways to produce probe-set level gene expression measures (GEMs). Disturbingly, the different approaches not only generate quite different measures but they could also yield very different analysis results. Here, we explore the question of how much the analysis results really do differ, first at the gene level, then at the biological process level. We demonstrate that, even though the gene level results may not necessarily match each other particularly well, as long as there is reasonably strong differentiation between the groups in the data, the various GEMs do in fact produce results that are similar to one another at the biological process level. Not only that the results are biologically relevant. As the extent of differentiation drops, the degree of concurrence weakens, although the biological relevance of findings at the biological process level may yet remain.


Developmental Biology | 2011

Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development.

Elizabeth M. McNeill; Mariana Klöckner-Bormann; Elizabeth C. Roesler; Lynn E. Talton; Dieder Moechars; Margaret Clagett-Dame

Development of the cerebellum involves a coordinated program of neuronal process outgrowth and migration resulting in a foliated structure that plays a key role in motor function. Neuron navigator 2 (Nav2) is a cytoskeletal-interacting protein that functions in neurite outgrowth and axonal elongation. Herein we show that hypomorphic mutant mice lacking the full-length Nav2 transcript exhibit ataxia and defects in cerebellar development. At embryonic day (E)17.5, the mutant cerebellum is reduced in size and exhibits defects in vermal foliation. Reduction in cell proliferation at early times (E12.5 and E14.5) may contribute to this size reduction. The full-length Nav2 transcript is expressed in the premigratory zone of the external granule layer (EGL). Granule cells in the germinal zone of the EGL appear to proliferate normally, however, due to the reduction in cerebellar circumference there are fewer total BrdU-labeled granule cells in the mutants, and these fail to migrate normally toward the interior of the cerebellum. In Nav2 hypomorphs, fewer granule cells migrate out of cerebellar EGL explants and neurite outgrowth from both explants and isolated external granule cell cultures is reduced. This suggests that the formation of parallel axon fibers and neuronal migration is disrupted in Nav2 mutants. This work supports an essential role for full-length Nav2 in cerebellar development, including axonal elongation and migration of the EGL neurons.


Neural Development | 2010

Nav2 is necessary for cranial nerve development and blood pressure regulation

Elizabeth M. McNeill; Kenneth P. Roos; Dieder Moechars; Margaret Clagett-Dame

BackgroundAll-trans retinoic acid (atRA) is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2) was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1), and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo.ResultsNav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal) and X (vagus). Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls.ConclusionsNav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.


Neurochemistry International | 2010

Demonstration of vesicular glutamate transporter-1 in corticotroph cells in the anterior pituitary of the rat

Zsuzsa S. Kocsis; Csilla S. Molnár; Masahiko Watanabe; Guy Daneels; Dieder Moechars; Zsolt Liposits; Erik Hrabovszky

Recent immunohistochemical studies of the rat adenohypophysis identified type-2 vesicular glutamate transporter (VGLUT2), a marker for glutamatergic neuronal phenotype, in high percentages of adenohypophysial gonadotrophs and thyrotrophs. The presence and molecular identity of amino acid neurotransmitters in the remaining hormone producing cell types are unknown. In the present study we addressed the putative synthesis of another glutamatergic marker, VGLUT1 by adenohypophysial cells. Immunohistochemical studies revealed VGLUT1 immunoreactivity in a small subset of polygonal medium-sized cells in the anterior lobe. Western blot analysis revealed a single major 60 kDa protein band in the adenohypophysis. Furthermore, the expression of VGLUT1 mRNA was confirmed by reverse transcription-polymerase chain reaction followed by sequence analysis of the amplicon. In contrast with rats which only showed VGLUT1 signal in the anterior lobe of the pituitary, mice contained high levels of VGLUT1 immunoreactivity in the intermediate, in addition to the anterior lobe. No signal was present in VGLUT1-knockout mice, providing evidence for specificity. In rats, results of colocalization studies with dual-immunofluorescent labeling provided evidence for VGLUT1 immunoreactivity in 45.9% of corticotrophs and 7.7% of luteinizing hormone beta-immunopositive gonadotrophs. Cells of the other peptide hormone phenotypes were devoid of VGLUT1 signal. A few cells in the adenohypophysis expressed both VGLUT1 and VGLUT2 immunoreactivities. The presence of the glutamate markers VGLUT1 and VGLUT2 in distinct populations of peptide hormone-secreting hypophysial cells highly indicates the involvement of endogenous glutamate release in autocrine/paracrine regulatory mechanisms. The biological function of adenohypophysial glutamate will require clarification.


Brain Research | 2009

Decreased expression of multidrug efflux transporters in the brains of GSK-3β transgenic mice

Joseph C. Lim; Zita Mickute; Monju Zaman; Sarah Hopkins; Hasini Wijesuriya; Thomas Steckler; Dieder Moechars; Fred Van Leuven; Zoltán Sarnyai; Stephen B. Hladky; Margery A. Barrand

Multidrug efflux transporters protect cells in the brain from potentially harmful substances but also from therapeutically useful drugs. Thus any condition that causes changes in their expression is of some importance with regard to drug access. In this study, changes in efflux transporter expression are investigated in mice containing a mutant constitutively active glycogen synthase kinase-3 (GSK-3beta) transgene, driven by the Thy-1 promoter so limiting its localization predominantly to neurons and some glial cells. As expected, decreases in beta-catenin were evident via Western blot analyses of cortical homogenates prepared from brains of these transgenic mice. As assessed by real time qRT-PCR, decreased transcript levels of the mdr1b isoform of P-glycoprotein, Mrp1 and Mrp4, (transporters associated with neurons and/or glial cells) were observed in the cortex but not the subventricular zone or hippocampus of the transgenic compared to wild type mouse brains. By contrast, no such decreases were evident with the mdr1a isoform of P-glycoprotein and Bcrp, transporters predominantly found in brain endothelium. Such transporter expression changes could not be accounted for by alterations in blood vessel density or neuronal to glial cell ratios as analyzed both from immunocytochemical staining and from RT-PCR. These observations support previous in vitro data showing that manipulations to GSK-3beta activity that alter signaling via beta-catenin can influence the expression of efflux transporters. Implications from this are that drug distribution into cells within the brain of these transgenic mice could be enhanced, hence warranting further investigation.


NeuroImage | 2010

[18F]JNJ41510417 a potential PET radioligand for imaging phosphodiesterase-10A in the brain

Sofie Celen; Michel Koole; Meri De Angelis; Ivan Sannen; Satish K. Chitneni; Jesús Alcázar; Stefanie Dedeurwaerdere; Dieder Moechars; Mark Schmidt; Alfons Verbruggen; Langlois Xavier; Koen Van Laere; José Ignacio Andrés; Guy Bormans

Phosphodiesterase-10A (PDE10A) is an enzyme that inactivates the intracellular second messengers cAMP and cGMP. Of all known PDE families, PDE10A has the most restricted distribution with high expression in striatum. Therefore, PDE10A inhibitors have been suggested for treatment of neuropsychiatric disorders. The aim of this study was to evaluate [F]JNJ41510417 for in vivo positron emission tomography (PET) of PDE10A in the brain.

Collaboration


Dive into the Dieder Moechars's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfons Verbruggen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy Bormans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ivan Sannen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Koen Van Laere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Koole

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sofie Celen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge