Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diedrich Fritzsche is active.

Publication


Featured researches published by Diedrich Fritzsche.


Nature | 2004

High-resolution record of Northern Hemisphere climate extending into the last interglacial period

Katrine K Andersen; Nobuhiko Azuma; Jean-Marc Barnola; Matthias Bigler; Pierre E. Biscaye; Nicolas Caillon; J. Chappellaz; Henrik Clausen; Dorthe Dahl-Jensen; Hubertus Fischer; Jacqueline Flückiger; Diedrich Fritzsche; Yoshiyuki Fujii; Kumiko Goto-Azuma; Karl Grönvold; Niels S. Gundestrup; M. Hansson; C. Huber; Christine S. Hvidberg; Sigfus J Johnsen; Ulf Jonsell; Jean Jouzel; Sepp Kipfstuhl; A. Landais; Markus Leuenberger; Reginald Lorrain; Valérie Masson-Delmotte; Heinrich Miller; Hideaki Motoyama; Hideki Narita

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 °C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Annals of Glaciology | 2005

A 275 year ice-core record from Akademii Nauk ice cap, Severnaya Zemlya, Russian Arctic

Diedrich Fritzsche; R. Schütt; Hanno Meyer; Heinz Miller; Frank Wilhelms; Thomas Opel; L. M. Savatyugin

Abstract Between 1999 and 2001, a 724 m long ice core was drilled on Akademii Nauk, the largest glacier on Severnaya Zemlya, Russian Arctic. The drilling site is located near the summit. The core is characterized by high melt-layer content. The melt layers are caused by melting and even by rain during the summer. We present high-resolution data of density, electrical conductivity (dielectrical profiling), stable water isotopes and melt-layer content for the upper 136m (120 m w.e.) of the ice core. The dating by isotopic cycles and electrical conductivity peak identification suggests that this core section covers approximately the past 275 years. Singularities of volcanogenic and anthropogenic origin provide well-defined additional time markers. Long-term temperatures inferred from 12 year running mean averages of δ18O reach their lowest level in the entire record around 1790. Thereafter the δ18O values indicate a continuously increasing mean temperature on the Akademii Nauk ice cap until 1935, interrupted only by minor cooling episodes. The 20th century is found to be the warmest period in this record.


Annals of Glaciology | 2002

A new deep ice core from Academii Nauk ice cap, Severnaya Zemlya, Eurasian Arctic: first results

Diedrich Fritzsche; Frank Wilhelms; L. M. Savatyugin; Jean Francis Pinglot; Hanno Meyer; Hans-Wolfgang Hubberten; Heinz Miller

Abstract The paper presents first results from the upper 54m of a 723.91m ice core drilled on Akademii Nauk ice cap, Severnaya Zemlya, Eurasian Arctic, in 1999– 2001, supplemented by data from shallow ice cores. the glacier’s peculiarity is the infiltration and refreezing of meltwater, which changes the original isotopic and chemical signals. Therefore, stratigraphical observations in these ice cores are more difficult than in those from central Greenland or Antarctica. However, the 1963 maximum of artificial radioactivity from atmospheric nuclear tests is clearly detectable in the deep ice core, and the δ18O profile of a 12.82 m shallow core shows annual variations. Consequently, at least for the upper part of the main core, an almost seasonal time resolution of palaeoclimate record could be expected. the Chernobyl layer is detected by increased 137Cs activity at depths of 11.81–12.51m related to the AD 2000 surface. the resulting mean annual net mass balance is 53±2 g cm–2 a–1. Data from dielectric profiling of the main core show considerable peaks in conductivity; one of them is interpreted as a volcano event. According to the resulting chronology, this part of the core represents approximately the last 100 years.


Journal of Glaciology | 2005

Glaciochemical reconnaissance of a new ice core from Severnaya Zemlya, Eurasian Arctic

K. Weiler; Hubertus Fischer; Diedrich Fritzsche; Urs Ruth; Frank Wilhelms; Heinz Miller

A deep ice core has been drilled on Akademii Nauk ice cap, Severnaya Zemlya, Eurasian Arctic. High-resolution chemical analysis has been carried out for the upper 53 m of this ice core to study its potential as an atmospheric aerosol archive, despite strong meltwater percolation. These records show that a seasonal atmospheric signal cannot be deduced. However, strong year-to-year variations have allowed the core to be dated, and a mean annual net mass balance of 0.46 m w.e. a -1 was deduced. The chemical signature of an extraordinarily high peak in electrical conductivity at 26 m depth pointed clearly to the eruption of Bezymianny, Kamchatka, in 1956. However, in general, peaks in the electrical conductivity are not necessarily related to deposition of volcanogenic sulphur aerosol. In contrast, maximum sulphate and nitrate concentrations in the ice could be related to maximum SO2 and NOx anthropogenic emissions in the 1970s, probably caused by the nickel- and copper-producing industries in Norilsk and on the Kola peninsula or by industrial combustion processes occurring in the Siberian Arctic. In addition, during recent decades sulphate and nitrate concentrations declined by 80% % and 60% %, respectively, reflecting a decrease in anthropogenic pollution of the Arctic basin.


Environmental Science & Technology | 2016

A Method for Continuous 239Pu Determinations in Arctic and Antarctic Ice Cores

Monica Arienzo; Joseph R. McConnell; Nathan Chellman; Alison S. Criscitiello; Mark A. J. Curran; Diedrich Fritzsche; Sepp Kipfstuhl; Robert Mulvaney; M. Nolan; Thomas Opel; Michael Sigl; J-P Steffensen

Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.


Isotopes in Environmental and Health Studies | 2013

Comparison of water isotope-ratio determinations using two cavity ring-down instruments and classical mass spectrometry in continuous ice-core analysis.

Olivia J. Maselli; Diedrich Fritzsche; Lawrence Layman; Joseph R. McConnell; Hanno Meyer

We present a detailed comparison between subsequent versions of commercially available wavelength-scanned cavity ring-down water isotope analysers (L2120-i and L2130-i, Picarro Inc.). The analysers are used in parallel in a continuous mode by adaption of a low-volume flash evaporation module. Application of the analysers to ice-core analysis is assessed by comparison between continuous water isotope measurements of a glacial ice-core from Severnaya Zemlya with discrete isotope-ratio mass spectrometry measurements performed on parallel samples from the same ice-core. The great advances between instrument versions, particularly in the measurement of δ2H, allow the continuous technique to achieve the same high level of accuracy and precision obtained using traditional isotope spectrometry techniques in a fraction of the experiment time. However, when applied to continuous ice-core measurements, increased integration times result in a compromise of the achievable depth resolution of the ice-core records.


Journal of Glaciology | 2009

115 year ice-core data from Akademii Nauk ice cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change

Thomas Opel; Diedrich Fritzsche; Hanno Meyer; R. Schütt; K. Weiler; Urs Ruth; Frank Wilhelms; Hubertus Fischer

From 1999 to 2001 a 724 m deep ice core was drilled on Akademii Nauk ice cap, Severnaya Zemlya, to gain high-resolution proxy data from the central Russian Arctic. Despite strong summertime meltwater percolation, this ice core provides valuable information on the regional climate and environmental history. We present data of stable water isotopes, melt-layer content and major ions from the uppermost 57 m of this core, covering the period 1883–1998. Dating was achieved by counting seasonal isotopic cycles and using reference horizons. Multi-annual δ 18 O values reflect Eurasian sub-Arctic and Arctic surface air-temperature variations. We found strong correlations to instrumental temperature data from some stations (e.g. r = 0.62 for Vardo, northern Norway). The δ 18 O values show pronounced 20th-century temperature changes, with a strong rise about 1920 and the absolute temperature maximum in the 1930s. A recent decrease in the deuterium-excess time series indicates an increasing role of the Kara Sea as a regional moisture source. From the multi-annual ion variations we deduced decreasing sea-salt aerosol trends in the 20th century, as reflected by sodium and chloride, whereas sulphate and nitrate are strongly affected by anthropogenic pollution.


Annals of Glaciology | 2014

The EPICA Dronning Maud Land deep drilling operation

Frank Wilhelms; Heinrich Miller; Michael Gerasimoff; Cord Drücker; Andreas Frenzel; Diedrich Fritzsche; Hannes Grobe; Steffen B. Hansen; Sverrir Hilmarsson; Georg Hoffmann; Kerstin Hörnby; Andrea Jaeschke; Steinunn S. Jakobsdóttir; Paul Juckschat; Achim Karsten; Lorenz Karsten; Patrik R Kaufmann; Torbjörn Karlin; Eberhard Kohlberg; Guido Kleffel; Anja Lambrecht; Astrid Lambrecht; Gunther Lawer; Ivan Schärmeli; Jochen Schmitt; Simon G. Sheldon; Morimasa Takata; Marcus Trenke; Birthe Twarloh; Fernando Valero-Delgado

Abstract We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.


Atmospheric Chemistry and Physics | 2013

Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

Jean-Francois Lamarque; F. Dentener; Joseph R. McConnell; C.-U. Ro; M. Shaw; Robert Vet; D. Bergmann; Philip Cameron-Smith; Stig B. Dalsøren; Ruth M. Doherty; G. Faluvegi; Steven J. Ghan; B. Josse; Y. H. Lee; Ian A. MacKenzie; David A. Plummer; Drew T. Shindell; Ragnhild Bieltvedt Skeie; David S. Stevenson; Guang Zeng; Mark A. J. Curran; Dorthe Dahl-Jensen; Sarah B. Das; Diedrich Fritzsche; M. Nolan

Collaboration


Dive into the Diedrich Fritzsche's collaboration.

Top Co-Authors

Avatar

Hanno Meyer

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Thomas Opel

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Frank Wilhelms

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

R. Schütt

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinrich Miller

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Hans-Wolfgang Hubberten

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Urs Ruth

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Frenzel

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge