Diego Antonioli
University of Eastern Piedmont
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diego Antonioli.
ACS Applied Materials & Interfaces | 2014
Federico Ferrarese Lupi; Tommaso Jacopo Giammaria; Gabriele Seguini; Francesco Vita; O. Francescangeli; Katia Sparnacci; Diego Antonioli; Valentina Gianotti; Michele Laus; Michele Perego
The self-assembly of asymmetric polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer based nanoporous thin films over a broad range of molar mass (Mn) between 39 kg·mol(-1) and 205 kg·mol(-1) is obtained by means of a simple thermal treatment. In the case of standard thermal treatments, the self-assembly process of block copolymers is hindered at small Mn by thermodynamic limitations and by a large kinetic barrier at high Mn. We demonstrate that a fine tuning of the annealing parameters, performed by a Rapid Thermal Processing (RTP) machine, permits us to overcome those limitations. Cylindrical features are obtained by varying Mn and properly changing the corresponding annealing temperature, while keeping constant the annealing time (900 s), the film thickness (∼30 nm), and the PS fraction (∼0.7). The morphology, the characteristic dimensions (i.e., the pore diameter d and the pore-to-pore distance L0), and the order parameter (i.e., the lattice correlation length ξ) of the samples are analyzed by scanning electron microscopy and grazing-incidence small-angle X-ray scattering, obtaining values of d ranging between 12 and 30 nm and L0 ranging between 24 and 73 nm. The dependence of L0 as a 0.67 power law of the number of segments places these systems inside the strong segregation limit regime. The experimental results evidence the capability to tailor the self-assembly processes of block copolymers over a wide range of molecular weights by a simple thermal process, fully compatible with the stringent constraints of lithographic applications and industrial manufacturing.
ACS Applied Materials & Interfaces | 2015
Katia Sparnacci; Diego Antonioli; Valentina Gianotti; Michele Laus; Federico Ferrarese Lupi; Tommaso Jacopo Giammaria; Gabriele Seguini; Michele Perego
Hydroxyl-terminated P(S-r-MMA) random copolymers (RCPs) with molecular weights (Mn) from 1700 to 69000 and a styrene unit fraction of approximately 61% were grafted onto a silicon oxide surface and subsequently used to study the orientation of nanodomains with respect to the substrate, in cylinder-forming PS-b-PMMA block copolymer (BCP) thin films. When the thickness (H) of the grafted layer is greater than 5-6 nm, a perpendicular orientation is always observed because of the efficient decoupling of the BCP film from the polar SiO2 surface. Conversely, if H is less than 5 nm, the critical thickness of the grafted layer, which allows the neutralization of the substrate and promotion of the perpendicular orientation of the nanodomains in the BCP film, is found to depend on the Mn of the RCP. In particular, when Mn = 1700, a 2.0 nm thick grafted layer is sufficient to promote the perpendicular orientation of the PMMA cylinders in the PS-b-PMMA BCP film. A proximity shielding mechanism of the BCP molecules from the polar substrate surface, driven by chain stretching of the grafted RCP molecules, is proposed.
Nanotechnology | 2014
Gabriele Seguini; Tommaso Jacopo Giammaria; Federico Ferrarese Lupi; Katia Sparnacci; Diego Antonioli; Valentina Gianotti; Francesco Vita; Immacolata F. Placentino; Jan Hilhorst; Claudio Ferrero; O. Francescangeli; Michele Laus; Michele Perego
The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol(-1) was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 °C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine.
Journal of Materials Chemistry C | 2014
Michele Perego; Federico Ferrarese Lupi; Monica Ceresoli; Tommaso Jacopo Giammaria; Gabriele Seguini; Emanuele Enrico; Luca Boarino; Diego Antonioli; Valentina Gianotti; Katia Sparnacci; Michele Laus
The pattern coarsening dynamics in symmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer thin films under conventional thermal treatments is extremely slow, resulting in limited correlation length values even after prolonged annealing at relatively high temperatures. This study describes the kinetics of symmetric block copolymer microphase separation when subjected to a thermal treatment based on the use of a Rapid Thermal Processing (RTP) system. The proposed methodology allows self-organization of symmetric PS-b-PMMA thin films in few seconds, taking advantage of the amount of solvent naturally trapped within the film during the spinning process. Distinct and self-registered morphologies, coexisting along the sample thickness, are obtained in symmetric PS-b-PMMA samples, with periodic lamellae laying over a hexagonal pattern of PMMA cylinders embedded in the PS matrix and perpendicularly oriented with respect to the substrate. The ordering dynamics and morphological evolution of the coexisting dual structures are delineated and the intimate mechanism of the self-assembly and coarsening processes is discussed and elucidated.
ACS Applied Materials & Interfaces | 2015
Elisa Martinelli; Ilaria Del Moro; Giancarlo Galli; Martina Barbaglia; Carlo Bibbiani; Elvira Mennillo; Matteo Oliva; Carlo Pretti; Diego Antonioli; Michele Laus
Novel photopolymerized network films based on a polysiloxane matrix containing varied amounts of polyoxyethylene (P3) or perfluorohexylethyl (F) dangling side chains were investigated. For films containing less than 10 wt % P3 and F, the wettability and elastic modulus were similar to those of the photopolymerized network matrix. However, angle-resolved X-ray photoelectron spectroscopy measurements proved that the surface of films with F dangling chains was highly enriched in fluorine depending on both the amount of P3 and F and their relative ratio in the films. The biological performance of the films was evaluated against a new widespread and invasive marine biofoulant, the serpulid Ficopomatus enigmaticus. The diatom Navicula salinicola was also assayed as a conventional model organism for comparison. Films richer in P3 better resisted the settlement and promoted the release of calcified tubeworms of F. enigmaticus.
Journal of Materials Chemistry C | 2014
F. Ferrarese Lupi; Tommaso Jacopo Giammaria; Gabriele Seguini; Monica Ceresoli; Michele Perego; Diego Antonioli; Valentina Gianotti; Katia Sparnacci; Michele Laus
Tailoring surface energies is the key factor to control the orientation of nanoscopic structures in thin block copolymer (BCP) films. In the general frame of the “grafting to” approach, this paper reports on the use of Rapid Thermal Processing (RTP) technology to perform flash grafting reactions of a hydroxyl terminated poly(styrene-r-methylmethacrylate) random copolymer to the activated silicon wafer surface. The perpendicular orientation of the cylindrical morphology of an asymmetric PS-b-PMMA block copolymer is achieved when the thickness of the random copolymer layer is higher than 6.0 nm. The grafting time to achieve this thickness reduces from about 750 s, when the RTP grafting process is performed at 230 °C, to 15 s at 310 °C. For a symmetric PS-b-PMMA block copolymer, the perpendicularly oriented lamellar morphology is obtained when the random layer thickness is higher than 3.5 nm, that is after 60 s RTP grafting time at 250 °C. In addition, TGA-GC-MS analysis indicates that a chain structural reorganization, which occurs during the RTP treatment at high temperature, affords a more stable film structure without changing its surface characteristics. In conclusion, the RTP technology allows the “grafting to” approach to be successfully integrated into the next generation lithographic processes and affords the unprecedented opportunity to study the grafting of macromolecules on time scales and in temperature ranges that have never been explored before, shedding new light on the early stages and on the dynamics of these processes.
ACS Applied Materials & Interfaces | 2015
Katia Sparnacci; Diego Antonioli; Valentina Gianotti; Michele Laus; Giampaolo Zuccheri; Federico Ferrarese Lupi; Tommaso Jacopo Giammaria; Gabriele Seguini; Monica Ceresoli; Michele Perego
Two strategies are envisioned to improve the thermal stability of the grafted layer and to allow the processing of the random copolymer/block copolymer (RCP/BCP) system at high temperature. From one side, a high-temperature thermal treatment of a commercial α-hydroxyl ω-2,2,6,6-tetramethylpiperidinyloxy functional RCP, namely, TR58, leads to the formation of a stabilized layer able to induce the perpendicular orientation of a symmetric BCP to temperatures higher than 310 °C. On the other side, an α-hydroxyl ω-Br functional RCP, namely, BrR58, with the same molar mass and composition of TR58, was prepared by activator regenerated by electron transfer atom transfer radical polymerization. The resulting brush layer can sustain the self-assembly of the symmetric BCP for processing temperatures as high as 330 °C. In both systems, the disruption of the BCP film, deposited on the grafted RCP layer, occurs because of the formation of bubbles, due to a low-temperature evolution of monomers from the RCP layer. The extent of the low-temperature monomer evolution is higher for TR58 than it is for BrR58 and starts at lower temperatures. For both copolymers, the thermal treatment offsets the low-temperature monomer evolution while still maintaining surface characteristics suitable to induce the perpendicular orientation of the BCPs, thus ultimately extending the range of processing temperatures of the BCP film and consequently speeding the self-organization process.
Journal of Chromatography A | 2014
Valentina Gianotti; Diego Antonioli; Katia Sparnacci; Michele Laus; Tommaso Jacopo Giammaria; Monica Ceresoli; Federico Ferrarese Lupi; Gabriele Seguini; Michele Perego
Polymeric materials are widely employed to build up tunable nanomasks for nano-patterning technologies. Ultrathin polymer layers are involved in this process. A Thermo Gravimetric Analysis-Mass Spectrometry (TGA-GC-MS) method was optimised, validated and successfully applied to investigate the thermal behavior of ultrathin poly(styrene-r-methylmethacrylate) random copolymer layers P(S-r-MMA) grafted to a silicon wafer surface. The interface between TGA and MS is highly versatile since many instrumental parameters (i.e. loop volumes, pulsed sampling frequencies, acquisition modalities, carrier gases, flow rates) can be easily tuned. Samples featuring substantial scale difference, i.e. bulk materials, thick films (few μm thickness), thin and ultrathin films (few nm thickness) can be analyzed without any instrumental modification or sample pretreatments. The TGA-GC-MS analysis was used to highlight subtle differences in samples featuring different thicknesses, in the 2-6 nm range, and subjected to various thermal treatments, thus indicating that this hyphenated technique could be successfully applied to the investigation of ultrathin polymer films.
Nanotechnology | 2014
Monica Ceresoli; Federico Ferrarese Lupi; Gabriele Seguini; Katia Sparnacci; Valentina Gianotti; Diego Antonioli; Michele Laus; Luca Boarino; Michele Perego
This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190-340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s.
ACS Applied Materials & Interfaces | 2016
Tommaso Jacopo Giammaria; Federico Ferrarese Lupi; Gabriele Seguini; Michele Perego; Francesco Vita; O. Francescangeli; Brandon Wenning; Christopher K. Ober; Katia Sparnacci; Diego Antonioli; Valentina Gianotti; Michele Laus
Block copolymer (BCP) self-assembly is expected to complement conventional optical lithography for the fabrication of next-generation microelectronic devices. In this regard, silicon-containing BCPs with a high Flory-Huggins interaction parameter (χ) are extremely appealing because they form high-resolution nanostructures with characteristic dimensions below 10 nm. However, due to their slow self-assembly kinetics and low thermal stability, these silicon-containing high-χ BCPs are usually processed by solvent vapor annealing or in solvent-rich ambient at a low annealing temperature, significantly increasing the complexity of the facilities and of the procedures. In this work, the self-assembly of cylinder-forming polystyrene-block-poly(dimethylsiloxane-random-vinylmethylsiloxane) (PS-b-P(DMS-r-VMS)) BCP on flat substrates is promoted by means of a simple thermal treatment at high temperatures. Homogeneous PS-b-P(DMS-r-VMS) thin films covering the entire sample surface are obtained without any evidence of dewetting phenomena. The BCP arranges in a single layer of cylindrical P(DMS-r-VMS) nanostructures parallel-oriented with respect to the substrate. By properly adjusting the surface functionalization, the heating rate, the annealing temperature, and the processing time, one can obtain correlation length values larger than 1 μm in a time scale fully compatible with the stringent requirements of the microelectronic industry.