Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Baronio is active.

Publication


Featured researches published by Diego Baronio.


Mediators of Inflammation | 2012

Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

Darlan Pase da Rosa; Luiz Felipe Forgiarini; Diego Baronio; Cristiano Andrade Feijó; Denis Martinez; Norma Anair Possa Marroni

Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n = 6) or a simulated IH (SIH) (n = 6) for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS), vascular endothelial growth factor (VEGF), and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.


PLOS ONE | 2015

Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid

Diego Baronio; Kamila Castro; Taylor Gonchoroski; Gabriela Mueller de Melo; Gustavo Della Flora Nunes; Victorio Bambini-Junior; Carmem Gottfried; Rudimar dos Santos Riesgo

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.


Respiratory Physiology & Neurobiology | 2013

Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea

Diego Baronio; Denis Martinez; Cintia Zappe Fiori; Victorio Bambini-Junior; Luiz Felipe Forgiarini; Darlan Pase da Rosa; Lenise Jihe Kim; Marcelle Reesink Cerski

Rostral fluid displacement has been proposed as a pathophysiologic mechanism of both central and obstructive sleep apnea. Aquaporins are membrane proteins that regulate water transport across the cell membrane and are involved in brain edema formation and resolution. The present study investigated the effect of intermittent hypoxia (IH), a model of sleep apnea, on brain aquaporins. Mice were exposed to intermittent hypoxia to a nadir of 7% oxygen fraction. Brain water content, Aquaporin-1 and Aquaporin-3 were measured in the cerebellum and hippocampus. Hematoxylin-eosin and immunohistochemistry stainings were performed to evaluate cell damage. Compared to the sham group, the hypoxia group presented higher brain water content, lower levels of Aquaporin-1 and similar levels of Aquaporin-3. Immunoreactivity to GFAP and S100B was stronger in the hypoxia group in areas of extensive gliosis, compatible with cytotoxic edema. These findings, although preliminary, indicate an effect of IH on aquaporins levels. Further investigation about the relevance of these data on the pathophysiology of OSA is warranted.


Lipids in Health and Disease | 2010

Brown adipose tissue: is it affected by intermittent hypoxia?

Denis Martinez; Cintia Zappe Fiori; Diego Baronio; Alicia Carissimi; Renata Schenkel Rivera Kaminski; Lenise Jihe Kim; Darlan Pase da Rosa; Ângelo José Gonçalves Bós

BackgroundIntermittent hypoxia (IH), a model of sleep apnea, produces weight loss in animals. We hypothesized that changes in brown adipose tissue (BAT) function are involved in such phenomenon. We investigated the effect of IH, during 35 days, on body weight, brown adipose tissue wet weight (BATww) and total protein concentration (TPC) of BAT.MethodsWe exposed Balb/c mice to 35 days of IH (n = 12) or sham intermittent hypoxia (SIH; n = 12), alternating 30 seconds of progressive hypoxia to a nadir of 6%, followed by 30 seconds of normoxia. During 8 hours, the rodents underwent a total of 480 cycles of hypoxia/reoxygenation, equivalent to an apnea index of 60/hour. BAT was dissected and weighed while wet. Protein was measured using the Lowry protein assay.ResultsBody weight was significantly reduced in animals exposed to IH, at day 35, from 24.4 ± 3.3 to 20.2 ± 2.2 g (p = 0.0004), while in the SIH group it increased from 23.3 ± 3.81 to 24.1 ± 2.96 g (p = 0.23). BATww was also lower in IH than in SIH group (p = 0.00003). TPC of BAT, however, was similar in IH (204.4 ± 44.3 μg/100 μL) and SIH groups (213.2 ± 78.7 μg/100 μL; p = 0.74) and correlated neither with body weight nor with BATww. TPC appeared to be unaffected by exposure to IH also in multivariate analysis, adjusting for body weight and BATww. The correlation between body weight and BATww is significant (rho= 0.63) for the whole sample. When IH and SIH groups are tested separately, the correlations are no longer significant (rho= 0.48 and 0.05, respectively).ConclusionIH during 35 days in a mice model of sleep apnea causes weight loss, BATww reduction, and no change in TPC of BATww. The mechanisms of weight loss under IH demands further investigation.


Nutritional Neuroscience | 2016

Folic acid and autism: What do we know?

Kamila Castro; Luciana da Silveira Klein; Diego Baronio; Carmem Gottfried; Rudimar dos Santos Riesgo; Ingrid Dalira Schweigert Perry

Autism spectrum disorders (ASD) consist in a range of neurodevelopmental conditions that share common features with autism, such as impairments in communication and social interaction, repetitive behaviors, stereotypies, and a limited repertoire of interests and activities. Some studies have reported that folic acid supplementation could be associated with a higher incidence of autism, and therefore, we aimed to conduct a systematic review of studies involving relationships between this molecule and ASD. The MEDLINE database was searched for studies written in English which evaluated the relationship between autism and folate. The initial search yielded 60 potentially relevant articles, of which 11 met the inclusion criteria. The agreement between reviewers was κ = 0.808. The articles included in the present study addressed topics related to the prescription of vitamins, the association between folic acid intake/supplementation during pregnancy and the incidence of autism, food intake, and/or nutrient supplementation in children/adolescents with autism, the evaluation of serum nutrient levels, and nutritional interventions targeting ASD. Regarding our main issue, namely the effect of folic acid supplementation, especially in pregnancy, the few and contradictory studies present inconsistent conclusions. Epidemiological associations are not reproduced in most of the other types of studies. Although some studies have reported lower folate levels in patients with ASD, the effects of folate-enhancing interventions on the clinical symptoms have yet to be confirmed.


Annals of General Psychiatry | 2014

Histaminergic system in brain disorders: lessons from the translational approach and future perspectives

Diego Baronio; Taylor Gonchoroski; Kamila Castro; Geancarlo Zanatta; Carmem Gottfried; Rudimar dos Santos Riesgo

Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer’s disease, schizophrenia, sleep disorders, drug dependence, and Parkinson’s disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans.


Nutritional Neuroscience | 2017

The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid

Kamila Castro; Diego Baronio; Ingrid Dalira Schweigert Perry; Rudimar dos Santos Riesgo; Carmem Gottfried

Objectives: Autism spectrum disorder (ASD) is characterized by impairments in social interaction and communication, and by restricted repetitive behaviors and interests. Its etiology is still unknown, but different environmental factors during pregnancy, such as exposure to valproic acid (VPA), are associated with high incidence of ASD in children. In this context, prenatal exposure to VPA in rodents has been used as a reliable model of ASD. Ketogenic diet (KD) is an alternative therapeutic option for refractory epilepsy; however, the effects of this approach in ASD-like behavior need to be evaluated. We conducted a behavioral assessment of the effects of KD in the VPA model of autism. Methods: Pregnant animals received a single-intraperitoneal injection of 600 mg/kg VPA, and their offspring were separated into four groups: (1) control group with standard diet (C-SD), (2) control group with ketogenic diet (C-KD), (3) VPA group with standard diet (VPA-SD), and (4) VPA group with ketogenic diet (VPA-KD). Results: When compared with the control group, VPA animals presented increased social impairment, repetitive behavior and higher nociceptive threshold. Interestingly, the VPA group fed with KD presented improvements in social behavior. These mice displayed higher scores in sociability index and social novelty index when compared with the SD-fed VPA mice. Discussion: VPA mice chronically exposed to a KD presented behavioral improvements; however, the mechanism by which KD improves ASD-like features needs to be further investigated. In conclusion, the present study reinforces the potential use of KD as a treatment for the core deficits of ASD.


Brain Research | 2015

Hypomyelination, memory impairment, and blood–brain barrier permeability in a model of sleep apnea

Lenise Jihe Kim; Denis Martinez; Cintia Zappe Fiori; Diego Baronio; Nélson Alexandre Kretzmann; Helena Maria Tannhauser Barros

We investigated the effect of intermittent hypoxia, mimicking sleep apnea, on axonal integrity, blood-brain barrier permeability, and cognitive function of mice. Forty-seven C57BL mice were exposed to intermittent or sham hypoxia, alternating 30s of progressive hypoxia and 30s of reoxigenation, during 8h/day. The axonal integrity in cerebellum was evaluated by transmission electron microscopy. Short- and long-term memories were assessed by novel object recognition test. The levels of endothelin-1 were measured by ELISA. Blood-brain barrier permeability was quantified by Evans Blue dye. After 14 days, animals exposed to intermittent hypoxia showed hypomyelination in cerebellum white matter and higher serum levels of endothelin-1. The short and long-term memories in novel object recognition test was impaired in the group exposed to intermittent hypoxia as compared to controls. Blood-brain barrier permeability was similar between the groups. These results indicated that hypomyelination and impairment of short- and long-term working memories occurred in C57BL mice after 14 days of intermittent hypoxia mimicking sleep apnea.


Archive | 2013

Valproic Acid in Autism Spectrum Disorder: From an Environmental Risk Factor to a Reliable Animal Model

Carmem Juracy Silveira Gottfried; Victorio Bambini-Junior; Diego Baronio; Geancarlo Zanatta; Roberta Bristot Silvestrin; Tamara da Silva Vaccaro; Rudimar dos Santos Riesgo

Autism spectrum disorders (ASD) have attracted public attention by its high prevalence, elevated social cost and large impact on the family [1]. Since the first descriptions of au‐ tism made by Hans Asperger in 1938 [2] and by Leo Kanner in 1943 [3, 4], much discus‐ sion has focused in the search for the triggering points of autism and identifying risk factors has become a high priority of scientists. Nevertheless, even after almost seventy years since the first reports, the etiology of autism remains unknown and its molecular basis is not well understood. Environmental factors (such as virus, bacteria, drugs, etc.) known to increase the risk of autism have critical periods of action during embryogene‐ sis. Congenital syndromes are found in high rates in patients with autism including so‐ matic changes originated early in the first trimester [5].


Neuroimmunomodulation | 2018

Reduced CD4 T Lymphocytes in Lymph Nodes of the Mouse Model of Autism Induced by Valproic Acid

Diego Baronio; Guilherme Bauer-Negrini; Kamila Castro; Gustavo Della Flora Nunes; Rudimar dos Santos Riesgo; Daniella Mendes-da-Cruz; Wilson Savino; Carmem Gottfried; Victorio Bambini-Junior

Objective: Considering the potential role of lymphocytes in the pathophysiology of autism spectrum disorder (ASD), we aimed to evaluate possible alterations of T cell pools in the lymphoid organs of an animal model of autism induced by valproic acid (VPA). Pregnant Swiss mice received a single intraperitoneal injection of 600 mg/kg of VPA (VPA group) or saline (control group) on day 11 of gestation. Male offspring were euthanized on postnatal day 60 for removal of thymuses, spleens, and a pool of inguinal, axillary and brachial lymph nodes. Cellularity was evaluated, and flow cytometry analysis was performed on cell suspensions incubated with the mouse antibodies anti-CD3-FITC, anti-CD4-PE, and anti-CD8-PE-Cy7. We observed that the prenatal exposure to VPA induced a reduction in the numbers of CD3+CD4+ T cells in their lymph nodes when compared to the control animals. This was specific since it was not seen in the thymus or spleen. The consistent decrease in the number of CD4+ T cells in subcutaneous lymph nodes of mice from the animal model of autism may be related to the allergic symptoms frequently observed in ASD. Further research is necessary to characterize the immunological patterns in ASD and the connection with the pathophysiology of this disorder.

Collaboration


Dive into the Diego Baronio's collaboration.

Top Co-Authors

Avatar

Rudimar dos Santos Riesgo

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Denis Martinez

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Kamila Castro

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Cintia Zappe Fiori

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carmem Gottfried

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alicia Carissimi

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ingrid Dalira Schweigert Perry

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Carmem Juracy Silveira Gottfried

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Daniela Massierer

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Darlan Pase da Rosa

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge