Diego Cantalapiedra
Instituto de Salud Carlos III
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diego Cantalapiedra.
European Journal of Neurology | 2008
Ana Bustamante-Aragonés; Trujillo-Tiebas Mj; Jesus Gallego-Merlo; M. Rodriguez de Alba; Cristina Gonzalez-Gonzalez; Diego Cantalapiedra; C. Ayuso; Carmen Ramos
Background and purpose: The presence of cell‐free fetal DNA in maternal plasma could allow performing a non‐invasive prenatal diagnosis of Huntington disease (HD). The great advantage of this diagnosis is the absence of risk of fetal loss that it entails.
Investigative Ophthalmology & Visual Science | 2008
Almudena Avila-Fernandez; Rosa Riveiro-Alvarez; Elena Vallespín; Robert Wilke; Ignacio Tapias; Diego Cantalapiedra; Aguirre-Lamban J; Ascension Gimenez; Trujillo-Tiebas Mj; Carmen Ayuso
PURPOSE Retinitis pigmentosa (RP) is a genetically heterogeneous group of inherited retinopathies. Up to now, 39 genes and loci have been implicated in nonsyndromic RP, yet the genetic bases of >50% of the cases, particularly of the recessive forms, remain unknown. A novel gene (CERKL) has been described as associated with RP26. It encodes a ceramide kinase that is assumed to be involved in sphingolipid-mediated apoptosis in the retina. This is a report of the phenotypes and genotypes of persons carrying disease-causing mutations in CERKL. METHODS Two hundred ten unrelated Spanish families with nonsyndromic autosomal recessive RP were analyzed for sequence variations. Seven of these families presented a mutation in CERKL. Nine affected persons of these families were clinically investigated, including visual field, electrophysiology, and fundus examination. RESULTS The mutation p.Arg257ter was identified in the homozygous state in all seven affected families. The patients with this variation in CERKL presented a common phenotype with characteristic macular and peripheral lesions. CONCLUSIONS This study presents the first genotype-phenotype correlation for persons carrying p.Arg257ter mutation and provides clues for a characteristic phenotype of these mutations among persons with autosomal recessive cases.
Orphanet Journal of Rare Diseases | 2013
Marta Corton; Sorina D. Tatu; Almudena Avila-Fernandez; Elena Vallespín; Ignacio Tapias; Diego Cantalapiedra; Rosa Riveiro-Alvarez; Sara Bernal; Blanca Garcia-Sandoval; Montserrat Baiget; Carmen Ayuso
BackgroundCRB1 mutations are reported as cause of severe congenital and early-onset retinal dystrophies (EORD) with different phenotypic manifestations, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and cone-rod dystrophies. Comprehensive mutational scanning of the whole gene has been only performed in few cohorts, mainly in LCA patients. Here, we aimed investigating the real prevalence of CRB1 mutations in the Spanish population by extensive screening of CRB1 mutations in a large cohort of LCA and EORP cases.MethodsThis report integrates data from previous studies on CRB1 defects in our Spanish cohort of LCA and early-onset RP (EORP) with new findings from a comprehensive mutational screening of the whole gene. The molecular tools used include mutation genotyping arrays, whole-genome homozygosity mapping, an optimized high-resolution melting (HRM) analysis and Sanger sequencing.ResultsA large clinically well-characterized cohort of 404 Spanish cases was studied, 114 of which suffered from LCA and 290 from EORP. This study reveals that 11% of Spanish patients carried mutations in CRB1, ranging from 9% of EORP to 14% of LCA cases. More than three quarters of the mutations identified herein have been first described in this Spanish cohort, 13 of them are unreported new variants and 13 had been previously reported in our previous studies.ConclusionsThis work provides a wide spectrum of CRB1 mutations in the Spanish EORD patients and evidences the major role of CRB1 as causal gene in the Spanish EORP patients. It is noteworthy that a high rate of private mutations only described in our cohort has been found so far. To our knowledge, this study represents the most complete mutational screening of CRB1 in a Spanish LCA and EORP cohort, allowing us to establish gene-specific frequencies and to provide a wide spectrum of CRB1 mutations in the Spanish population.
British Journal of Ophthalmology | 2009
Aguirre-Lamban J; Rosa Riveiro-Alvarez; Susana Maia-Lopes; Diego Cantalapiedra; Elena Vallespín; Almudena Avila-Fernandez; Villaverde-Montero C; Trujillo-Tiebas Mj; Carmen Ramos; Carmen Ayuso
Background/aims: Mutations in ABCA4 have been associated with autosomal recessive Stargardt disease (STGD), a few cases with autosomal recessive cone–rod dystrophy (arCRD) and autosomal recessive retinitis pigmentosa (arRP). The purpose of the study was threefold: to molecularly characterise families with no mutations or partially characterised families; to determine the specificity and sensitivity of the genotyping microarray; and to evaluate the efficiency of different methodologies. Methods: 23 STGD, five arCRD and three arRP Spanish patients who were previously analysed with the ABCR400 microarray were re-evaluated. Results were confirmed by direct sequencing. In patients with either none or only one mutant allele, ABCA4 was further analysed by denaturing high-performance liquid chromatography (dHPLC) and multiplex ligation-dependent probe amplification (MLPA). Haplotype analysis was also performed. Results: In the first analysis performed with the microarray, 27 ABCA4 variants (27/62; 43.5%) were found. By dHPLC scanning, 12 novel mutations were additionally identified. In addition, two previously described mutations, one false negative (1/62; 1.6%) and one false positive (1.6%), were detected. MLPA analysis did not reveal additional substitutions. The new strategy yielded an increment of 21% compared with the approach used in the first round. Conclusion: ABCA4 should be analysed by optimal combination of high-throughput screening techniques such as microarray, dHPLC and direct sequencing. To the best of our knowledge, this strategy yielded significant mutational spectrum identification in Spanish patients with ABCA4-associated phenotypes. Follow-up of patients, presenting an early onset of the disease and severe mutations, seems essential to perform accurate genotype–phenotype correlations and further characterisation of pathological ABCA4 alleles.
Investigative Ophthalmology & Visual Science | 2010
Jana Aguirre-Lamban; Rosa Riveiro-Alvarez; Maria Garcia-Hoyos; Diego Cantalapiedra; Almudena Avila-Fernandez; Villaverde-Montero C; María José Trujillo-Tiebas; Carmen Ramos; Carmen Ayuso
PURPOSE Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD), a few cases of autosomal recessive cone-rod dystrophy (arCRD), and autosomal recessive retinitis pigmentosa (arRP). The purpose of this study was to compare high-resolution melting (HRM) analysis with denaturing high-performance liquid chromatography (dHPLC), to evaluate the efficiency of the different screening methodologies. METHODS Thirty-eight STGD, 15 arCRD, and 5 arRP unrelated Spanish patients who had been analyzed with the ABCR microarray were evaluated. The results were confirmed by direct sequencing. In patients with either no or only one mutant allele, ABCA4 was further analyzed by HRM and dHPLC. Haplotype analysis was also performed. RESULTS In a previous microarray analysis, 37 ABCA4 variants (37/116; 31.9%) were found. dHPLC and HRM scanning identified 18 different genotypes in 20 samples. Of the samples studied, 19/20 were identified correctly by HRM and 16/20 by dHPLC. One homozygous mutation was not detected by dHPLC; however, the p.Cys2137Tyr homozygote was distinguished from the wild-type by HRM technique. In the same way, one novel change in exon 5 (p.Arg187His) was found only by means of the HRM technique. In addition, dHPLC identified the mutation p.Trp1724Cys in one sample; however, HRM detected the mutation in two samples. CONCLUSIONS ABCA4 should be analyzed by an optimal screening technique, to perform further characterization of pathologic alleles. The results seemed to show that HRM had better sensitivity and specificity than did dHPLC, with the advantage that some homozygous sequence alterations were identifiable.
Ophthalmology | 2013
Rosa Riveiro-Alvarez; Miguel-Angel Lopez-Martinez; Jana Zernant; Aguirre-Lamban J; Diego Cantalapiedra; Almudena Avila-Fernandez; Ascension Gimenez; Maria-Isabel Lopez-Molina; Blanca Garcia-Sandoval; Marta Corton; Sorina D. Tatu; Patricia Fernandez-San Jose; Trujillo-Tiebas Mj; Carmen Ramos; Rando Allikmets; Carmen Ayuso
OBJECTIVE To provide a comprehensive overview of all detected mutations in the ABCA4 gene in Spanish families with autosomal recessive retinal disorders, including Stargardts disease (arSTGD), cone-rod dystrophy (arCRD), and retinitis pigmentosa (arRP), and to assess genotype-phenotype correlation and disease progression in 10 years by considering the type of variants and age at onset. DESIGN Case series. PARTICIPANTS A total of 420 unrelated Spanish families: 259 arSTGD, 86 arCRD, and 75 arRP. METHODS Spanish families were analyzed through a combination of ABCR400 genotyping microarray, denaturing high-performance liquid chromatography, and high-resolution melting scanning. Direct sequencing was used as a confirmation technique for the identified variants. Screening by multiple ligation probe analysis was used to detect possible large deletions or insertions in the ABCA4 gene. Selected families were analyzed further by next generation sequencing. MAIN OUTCOME MEASURES DNA sequence variants, mutation detection rates, haplotypes, age at onset, central or peripheral vision loss, and night blindness. RESULTS Overall, we detected 70.5% and 36.6% of all expected ABCA4 mutations in arSTGD and arCRD patient cohorts, respectively. In the fraction of the cohort where the ABCA4 gene was sequenced completely, the detection rates reached 73.6% for arSTGD and 66.7% for arCRD. However, the frequency of possibly pathogenic ABCA4 alleles in arRP families was only slightly higher than that in the general population. Moreover, in some families, mutations in other known arRP genes segregated with the disease phenotype. CONCLUSIONS An increasing understanding of causal ABCA4 alleles in arSTGD and arCRD facilitates disease diagnosis and prognosis and also is paramount in selecting patients for emerging clinical trials of therapeutic interventions. Because ABCA4-associated diseases are evolving retinal dystrophies, assessment of age at onset, accurate clinical diagnosis, and genetic testing are crucial. We suggest that ABCA4 mutations may be associated with a retinitis pigmentosa-like phenotype often as a consequence of severe (null) mutations, in cases of long-term, advanced disease, or both. Patients with classical arRP phenotypes, especially from the onset of the disease, should be screened first for mutations in known arRP genes and not ABCA4.
Investigative Ophthalmology & Visual Science | 2011
Aguirre-Lamban J; Juan J. González-Aguilera; Rosa Riveiro-Alvarez; Diego Cantalapiedra; Almudena Avila-Fernandez; Villaverde-Montero C; Marta Corton; Blanca Garcia-Sandoval; Carmen Ayuso
PURPOSE Mutations in ABCA4 have been associated with autosomal recessive Stargardt disease, autosomal recessive cone-rod dystrophy, and autosomal recessive retinitis pigmentosa. The purpose of this study was to determine (1) associations among mutations and polymorphisms and (2) the role of the polymorphisms as protector/risk factors. METHODS A case-control study was designed in which 128 Spanish patients and 84 control individuals were analyzed. Patient samples presented one or two mutated alleles previously identified using ABCR400 microarray and sequencing. RESULTS A total of 18 previously described polymorphisms were studied in patients and control individuals. All except one presented a polymorphisms frequency higher than 5% in patients, and five mutations were found to have a frequency >5%. The use of statistical methods showed that the frequency of the majority of polymorphisms was similar in patients and controls, except for the IVS10+5delG, p.Asn1868Ile, IVS48+21C>T, and p.Arg943Gln polymorphisms. In addition, IVS48+21C>T and p.Arg943Gln were found to be in linkage disequilibrium with the p.Gly1961Glu and p.Arg602Trp mutations, respectively. CONCLUSIONS Although the high allelic heterogeneity in ABCA4 and the wide spectrum of many common and rare polymorphisms complicate the interpretation of clinical relevance, polymorphisms were identified that may act as risk factors (p.Asn1868Ile) and others that may act as protection factors (p.His423Arg and IVS10+5 delG).
British Journal of Ophthalmology | 2009
Rosa Riveiro-Alvarez; Aguirre-Lamban J; M Angel Lopez-Martinez; M Jose Trujillo-Tiebas; Diego Cantalapiedra; Elena Vallespín; Almudena Avila-Fernandez; Carmen Ramos; C. Ayuso
Aim: To determine the carrier frequency of ABCA4 mutations in order to achieve an insight into the prevalence of autosomal recessive Stargardt disease (arSTGD) in the Spanish population. Methods: arSTGD patients (n = 133) were analysed using ABCR400 microarray and sequencing. Control subjects were analysed by two different strategies: 200 individuals were screened for the p.Arg1129Leu mutation by denaturing-HPLC and sequencing; 78 individuals were tested for variants with the microarray and sequencing. Results: For the first strategy in control subjects, the p.Arg1129Leu variant was found in two heterozygous individuals, which would mean a carrier frequency for any variant of ∼6.0% and a calculated arSTGD prevalence of 1:1000. For the second strategy, carrier frequency was 6.4% and therefore an estimated prevalence of the disease of 1:870. Conclusion: Calculated prevalence of arSTGD based on the ABCA4 carrier frequency could be considerably higher than previous estimation. This discrepancy between observed (genotypic) and estimated (phenotypic) prevalence could be due to the existence of non-pathological or low penetrance alleles, which may result in late-onset arSTGD or may be implicated in age-related macular degeneration. This situation should be regarded with especial care when genetic counselling is given and further follow-up of these patients should be recommended.
Investigative Ophthalmology & Visual Science | 2009
Rosa Riveiro-Alvarez; Trujillo-Tiebas Mj; Ascensión Gimenez-Pardo; Maria Garcia-Hoyos; Miguel-Ángel López-Martínez; Aguirre-Lamban J; Blanca Garcia-Sandoval; Silvia Vazquez-Fernandez del Pozo; Diego Cantalapiedra; Almudena Avila-Fernandez; Montserrat Baiget; Carmen Ramos; C. Ayuso
PURPOSE X-linked juvenile retinoschisis (XLRS) is one of the most common causes of juvenile macular degeneration in males, characterized by microcystic changes, splitting within the inner retinal layer (schisis), and the presence of vitreous veils. This study was conducted to describe and further correlate specific genetic variation in Spanish patients with XLRS with clinical characteristics and additional ophthalmic complications. METHODS The study was performed in 34 Spanish families with XLRS, comprising 51 affected males. Thorough clinical ophthalmic and electrophysiological examinations were performed. The coding regions of the RS1 gene were amplified by polymerase chain reaction and directly sequenced. Haplotype analyses were also performed. RESULTS Twenty different mutations were identified. Ten of the 20 were novel and 3 were de novo mutational events. The most common mutation (p.Gln154Arg; 6/20) presented a common haplotype. RS1 variants did not correlate with ophthalmic findings and were not associated with additional ophthalmic complications. CONCLUSIONS The prevalent p.Gln154Arg mutation is first reported in this work and presents a common origin in Spanish patients with XLRS. In addition, de novo mutations mainly occur in CG dinucleotides. Despite the large mutational spectrum and variable phenotypes, no genotype-phenotype correlations were found. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide a prognosis.
Investigative Ophthalmology & Visual Science | 2008
Maria Garcia-Hoyos; Isabel Lorda-Sanchez; Pilar Gómez-Garre; Cristina Villaverde; Diego Cantalapiedra; Ana Bustamante; Dan Diego-Alvarez; Elena Vallespín; Jesus Gallego-Merlo; María José Trujillo; Carmen Ramos; Carmen Ayuso
PURPOSE Choroideremia (CHM) is an X-linked ophthalmic disease. The gene associated with CHM (REP-1) encodes a ubiquitously expressed protein that is indispensable for the posttranslational activation of retina-specific Rab protein. Different mutations, including large genomic rearrangements involving the REP-1 gene, are responsible for CHM, but they all cause the protein to be truncated or absent. The authors screened 20 Spanish families with clinical diagnoses of CHM to determine the molecular cause of the disease. METHODS First, the authors performed haplotype analyses to determine whether the disease is linked to the REP-1 gene. In families in whom the disease segregated with the CHM locus (n = 14), mutational screening of the REP-1 gene was performed. RESULTS In 13 of the 14 families in which the phenotype segregated with the CHM locus, the authors identified the mutation associated with the disease. Eight different molecular defects that led to truncation and one that led to complete absence of the REP-1 protein were found in nine families and one family, respectively. Furthermore, the authors identified a novel type of mutation in the REP-1 gene in three families. This novel type of mutation did not result in a truncated or absent protein. Rather, these patients lost different parts of the REP-1 mRNA in-frame that in all the cases encode a conserved protein domain implicated in the interaction with Rab proteins. CONCLUSIONS Based on the different mutations found, the authors propose a four-step protocol for the molecular diagnosis of CHM.