Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Gutierrez is active.

Publication


Featured researches published by Diego Gutierrez.


Computers & Graphics | 2013

Special Section on Advanced Displays: A survey on computational displays: Pushing the boundaries of optics, computation, and perception

Belen Masia; Gordon Wetzstein; Piotr Didyk; Diego Gutierrez

Display technology has undergone great progress over the last few years. From higher contrast to better temporal resolution or more accurate color reproduction, modern displays are capable of showing images which are much closer to reality. In addition to this trend, we have recently seen the resurrection of stereo technology, which in turn fostered further interest on automultiscopic displays. These advances share the common objective of improving the viewing experience by means of a better reconstruction of the plenoptic function along any of its dimensions. In addition, one usual strategy is to leverage known aspects of the human visual system (HVS) to provide apparent enhancements, beyond the physical limits of the display. In this survey, we analyze these advances, categorize them along the dimensions of the plenoptic function, and present the relevant aspects of human perception on which they rely.


international conference on computer graphics and interactive techniques | 2009

Evaluation of reverse tone mapping through varying exposure conditions

Belen Masia; Sandra Agustin; Roland W. Fleming; Olga Sorkine; Diego Gutierrez

Most existing image content has low dynamic range (LDR), which necessitates effective methods to display such legacy content on high dynamic range (HDR) devices. Reverse tone mapping operators (rTMOs) aim to take LDR content as input and adjust the contrast intelligently to yield output that recreates the HDR experience. In this paper we show that current rTMO approaches fall short when the input image is not exposed properly. More specifically, we report a series of perceptual experiments using a Brightside HDR display and show that, while existing rTMOs perform well for under-exposed input data, the perceived quality degrades substantially with over-exposure, to the extent that in some cases subjects prefer the LDR originals to images that have been treated with rTMOs. We show that, in these cases, a simple rTMO based on gamma expansion avoids the errors introduced by other methods, and propose a method to automatically set a suitable gamma value for each image, based on the image key and empirical data. We validate the results both by means of perceptual experiments and using a recent image quality metric, and show that this approach enhances visible details without causing artifacts in incorrectly-exposed regions. Additionally, we perform another set of experiments which suggest that spatial artifacts introduced by rTMOs are more disturbing than inaccuracies in the expanded intensities. Together, these findings suggest that when the quality of the input data is unknown, reverse tone mapping should be handled with simple, non-aggressive methods to achieve the desired effect.


Computer Graphics Forum | 2012

Intrinsic Images by Clustering

Elena Garces; Adolfo Muñoz; Jorge Lopez-Moreno; Diego Gutierrez

Decomposing an input image into its intrinsic shading and reflectance components is a long‐standing ill‐posed problem. We present a novel algorithm that requires no user strokes and works on a single image. Based on simple assumptions about its reflectance and luminance, we first find clusters of similar reflectance in the image, and build a linear system describing the connections and relations between them. Our assumptions are less restrictive than widely‐adopted Retinex‐based approaches, and can be further relaxed in conflicting situations. The resulting system is robust even in the presence of areas where our assumptions do not hold. We show a wide variety of results, including natural images, objects from the MIT dataset and texture images, along with several applications, proving the versatility of our method.


international conference on computer graphics and interactive techniques | 2014

Intrinsic video and applications

Genzhi Ye; Elena Garces; Yebin Liu; Qionghai Dai; Diego Gutierrez

We present a method to decompose a video into its intrinsic components of reflectance and shading, plus a number of related example applications in video editing such as segmentation, stylization, material editing, recolorization and color transfer. Intrinsic decomposition is an ill-posed problem, which becomes even more challenging in the case of video due to the need for temporal coherence and the potentially large memory requirements of a global approach. Additionally, user interaction should be kept to a minimum in order to ensure efficiency. We propose a probabilistic approach, formulating a Bayesian Maximum a Posteriori problem to drive the propagation of clustered reflectance values from the first frame, and defining additional constraints as priors on the reflectance and shading. We explicitly leverage temporal information in the video by building a causal-anticausal, coarse-to-fine iterative scheme, and by relying on optical flow information. We impose no restrictions on the input video, and show examples representing a varied range of difficult cases. Our method is the first one designed explicitly for video; moreover, it naturally ensures temporal consistency, and compares favorably against the state of the art in this regard.


international conference on computer graphics and interactive techniques | 2014

A similarity measure for illustration style

Elena Garces; Aseem Agarwala; Diego Gutierrez; Aaron Hertzmann

This paper presents a method for measuring the similarity in style between two pieces of vector art, independent of content. Similarity is measured by the differences between four types of features: color, shading, texture, and stroke. Feature weightings are learned from crowdsourced experiments. This perceptual similarity enables style-based search. Using our style-based search feature, we demonstrate an application that allows users to create stylistically-coherent clip art mash-ups.


tests and proofs | 2009

Screen-space perceptual rendering of human skin

Jorge Jimenez; Veronica Sundstedt; Diego Gutierrez

We propose a novel skin shader which translates the simulation of subsurface scattering from texture space to a screen-space diffusion approximation. It naturally scales well while maintaining a perceptually plausible result. This technique allows us to ensure real-time performance even when several characters may appear on screen at the same time. The visual realism of the resulting images is validated using a subjective psychophysical preference experiment. Our results show that, independent of distance and light position, the images rendered using our novel shader have as high visual realism as a previously developed physically-based shader.


ACM Transactions on Graphics | 2012

Physically-based simulation of rainbows

Iman Sadeghi; Adolfo Muñoz; Philip Laven; Wojciech Jarosz; Francisco J. Serón; Diego Gutierrez; Henrik Wann Jensen

In this article, we derive a physically-based model for simulating rainbows. Previous techniques for simulating rainbows have used either geometric optics (ray tracing) or Lorenz-Mie theory. Lorenz-Mie theory is by far the most accurate technique as it takes into account optical effects such as dispersion, polarization, interference, and diffraction. These effects are critical for simulating rainbows accurately. However, as Lorenz-Mie theory is restricted to scattering by spherical particles, it cannot be applied to real raindrops which are nonspherical, especially for larger raindrops. We present the first comprehensive technique for simulating the interaction of a wavefront of light with a physically-based water drop shape. Our technique is based on ray tracing extended to account for dispersion, polarization, interference, and diffraction. Our model matches Lorenz-Mie theory for spherical particles, but it also enables the accurate simulation of nonspherical particles. It can simulate many different rainbow phenomena including double rainbows and supernumerary bows. We show how the nonspherical raindrops influence the shape of the rainbows, and we provide a simulation of the rare twinned rainbow, which is believed to be caused by nonspherical water drops.


international conference on computer graphics and interactive techniques | 2010

A practical appearance model for dynamic facial color

Jorge Jimenez; Timothy Scully; Nuno Barbosa; Craig Donner; Xenxo Alvarez; Teresa Vieira; Paul J. Matts; Verónica Orvalho; Diego Gutierrez; Tim Weyrich

Facial appearance depends on both the physical and physiological state of the skin. As people move, talk, undergo stress, and change expression, skin appearance is in constant flux. One of the key indicators of these changes is the color of skin. Skin color is determined by scattering and absorption of light within the skin layers, caused mostly by concentrations of two chromophores, melanin and hemoglobin. In this paper we present a real-time dynamic appearance model of skin built from in vivo measurements of melanin and hemoglobin concentrations. We demonstrate an efficient implementation of our method, and show that it adds negligible overhead to existing animation and rendering pipelines. Additionally, we develop a realistic, intuitive, and automatic control for skin color, which we term a skin appearance rig. This rig can easily be coupled with a traditional geometric facial animation rig. We demonstrate our method by augmenting digital facial performance with realistic appearance changes.


Computers & Graphics | 2013

Special Section on Advanced Displays: Display adaptive 3D content remapping

Belen Masia; Gordon Wetzstein; Carlos Aliaga; Ramesh Raskar; Diego Gutierrez

Glasses-free automultiscopic displays are on the verge of becoming a standard technology in consumer products. These displays are capable of producing the illusion of 3D content without the need of any additional eyewear. However, due to limitations in angular resolution, they can only show a limited depth of field, which translates into blurred-out areas whenever an object extrudes beyond a certain depth. Moreover, the blurring is device-specific, due to the different constraints of each display. We introduce a novel display-adaptive light field retargeting method, to provide high-quality, blur-free viewing experiences of the same content on a variety of display types, ranging from hand-held devices to movie theaters. We pose the problem as an optimization, which aims at modifying the original light field so that the displayed content appears sharp while preserving the original perception of depth. In particular, we run the optimization on the central view and use warping to synthesize the rest of the light field. We validate our method using existing objective metrics for both image quality (blur) and perceived depth. The proposed framework can also be applied to retargeting disparities in stereoscopic image displays, supporting both dichotomous and non-dichotomous comfort zones.


Computers & Graphics | 2010

Computer Graphics in Spain: a Selection of Papers from CEIG 2009: Compositing images through light source detection

Jorge Lopez-Moreno; Sunil Hadap; Erik Reinhard; Diego Gutierrez

Compositing an image of an object into another image is a frequently occurring task in both image processing and augmented reality. To ensure a seamless composition, it is often necessary to infer the light conditions of the image to adjust the illumination of the inserted object. Here, we present a novel algorithm for multiple light detection that leverages the limitations of the human visual system (HVS) described in the literature and measured by our own psychophysical study. Finally, we show an application of our method to both image compositing and synthetic object insertion.

Collaboration


Dive into the Diego Gutierrez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Belen Masia

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Serrano

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar Anson

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge