Diego Hojsgaard
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diego Hojsgaard.
Critical Reviews in Plant Sciences | 2014
Diego Hojsgaard; Simone Klatt; Roland Baier; John G. Carman; Elvira Hörandl
Apomixis in angiosperms is asexual reproduction from seed. Its importance to angiospermous evolution and biodiversity has been difficult to assess mainly because of insufficient taxonomic documentation. Thus, we assembled literature reporting apomixis occurrences among angiosperms and transferred the information to an internet database (http://www.apomixis.uni-goettingen.de). We then searched for correlations between apomixis occurrences and well-established measures of taxonomic diversity and biogeography. Apomixis was found to be taxonomically widespread with no clear tendency to specific groups and to occur with sexuality at all taxonomic levels. Adventitious embryony was the most frequent form (148 genera) followed by apospory (110) and diplospory (68). All three forms are phylogenetically scattered, but this scattering is strongly associated with measures of biodiversity. Across apomictic-containing orders and families, numbers of apomict-containing genera were positively correlated with total numbers of genera. In general, apomict-containing orders, families, and subfamilies of Asteraceae, Poaceae, and Orchidaceae were larger, i.e., they possessed more families or genera, than non-apomict-containing orders, families or subfamilies. Furthermore, many apomict-containing genera were found to be highly cosmopolitan. In this respect, 62% occupy multiple geographic zones. Numbers of genera containing sporophytic or gametophytic apomicts decreased from the tropics to the arctic, a trend that parallels general biodiversity. While angiosperms appear to be predisposed to shift from sex to apomixis, there is also evidence of reversions to sexuality. Such reversions may result from genetic or epigenetic destabilization events accompanying hybridization, polyploidy, or other cytogenetic alterations. Because of increased within-plant genetic and genomic heterogeneity, range expansions and diversifications at the species and genus levels may occur more rapidly upon reversion to sexuality. The significantly-enriched representations of apomicts among highly diverse and geographically-extensive taxa, from genera to orders, support this conclusion.
Annals of Botany | 2013
Juan Pablo Amelio Ortiz; Camilo L. Quarin; Silvina Claudia Pessino; Carlos Alberto Acuña; Eric J. Martínez; Francisco Espinoza; Diego Hojsgaard; Maria Esperanza Sartor; María Emilia Cáceres; Fulvio Pupilli
BACKGROUND Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.
New Phytologist | 2013
Diego Hojsgaard; Eric J. Martínez; Camilo L. Quarin
Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plants life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality.
Plant Biosystems | 2012
Elvira Hörandl; Diego Hojsgaard
Abstract Apomixis, the asexual reproduction via seed, has long been regarded a blind alley of evolution. This hypothesis was based on the assumption that apomixis is an irreversible, phylogenetically derived trait that would rapidly lead to extinction of the respective lineages. However, recent updates of the taxonomic distribution of apomixis in angiosperms suggest an alternative evolutionary scenario. Apomixis is taxonomically scattered and occurs in both early and late branching lineages, with several reversals from apomixis to obligate sex along phylogeny. Genetic control of apomixis is based on altered expression patterns of the same genes that control sexual development; epigenetic changes following polyploidization and/or hybridization may trigger shifts from sexuality to apomixis. Mendelian inheritance confirms the facultative nature and possible reversibility of apomixis to sexual reproduction. Apomixis, therefore, could represent a transition period in the evolution of polyploid complexes, with polyspory in paleopolyploids being a remnant of lost apomixis. In neopolyploids, apomixis helps to overcome sterility and allows for geographical range expansions of agamic polyploid complexes. The facultative nature of apomixis allows for reversal to sexuality and further speciation of paleopolyploid lineages. Thus, apomixis may facilitate diversification of polyploid complexes and evolution in angiosperms.
Molecular Ecology | 2013
Marco Pellino; Diego Hojsgaard; Thomas Schmutzer; Uwe Scholz; Elvira Hörandl; Heiko Vogel; Timothy F. Sharbel
Asexual lineages are thought to be prone to extinction because of deleterious mutation accumulation (Mullers ratchet). Here, we analyse genomic effects of hybridity, polyploidy and allelic divergence in apomictic plants, and identify loci under divergent selection among sexual/apomictic lineages. RNAseq was used to sequence the flower‐specific transcriptomes of five genotypes of the Ranunculus auricomus complex, representing three sexual and two apomictic reproductive biotypes. The five sequence libraries were pooled and de novo assembly performed, and the resultant assembly was used as a backbone for a subsequent alignment of each separate library. High‐quality single‐nucleotide (SNP) and insertion–deletion (indel) polymorphisms were mined from each library. Annotated genes for which open reading frames (ORF) could be determined were analysed for signatures of divergent versus stabilizing selection. A comparison between all genotypes supports the hypothesis of Pleistocene hybrid origin of both apomictic genotypes from R. carpaticola and R. cassubicifolius, with subsequent allelic divergence of apomictic lineages (Meselson effect). Pairwise comparisons of nonsynonymous (dN) to synonymous (dS) substitution rate ratios between apomictic and sexual genotypes for 1231 genes demonstrated similar distributions for all comparisons, although 324 genes demonstrated outlier (i.e. elevated) dN/dS ratios. Gene ontology analyses of these outliers revealed significant enrichment of genes associated with reproduction including meiosis and gametogenesis, following predictions of divergent selection between sexual and apomictic reproduction, although no significant signal of genome‐wide mutation accumulation could be identified. The results suggest that gene function should be considered in order to understand effects of mutation accumulation in asexual lineages.
New Phytologist | 2014
Diego Hojsgaard; Johann Greilhuber; Marco Pellino; Ovidiu Paun; Timothy F. Sharbel; Elvira Hörandl
Hybridisation and polyploidy are major forces contributing to plant speciation. Homoploid (2x) and heteroploid (3x) hybrids, however, represent critical stages for evolution due to disturbed meiosis and reduced fertility. Apomixis – asexual reproduction via seeds – can overcome hybrid sterility, but requires several concerted alterations of developmental pathways to result in functional seed formation. Here, we analyse the reproductive behaviours of homo- and heteroploid synthetic hybrids from crosses between sexual diploid and tetraploid Ranunculus auricomus species to test the hypothesis that developmental asynchrony in hybrids triggers the shift to apomictic reproduction. Evaluation of male and female gametophyte development, viability and functionality of gametes shows developmental asynchrony, whereas seed set and germinability indicate reduced fitness in synthetic hybrids compared to sexual parents. We present the first experimental evidence for spontaneous apospory in most hybrids as an alternative pathway to meiosis, and the appearance of functional apomictic seeds in triploids. Bypassing meiosis permits these triploid genotypes to form viable seed and new polyploid progeny. Asynchronous development causes reduced sexual seed set and emergence of apospory in synthetic Ranunculus hybrids. Apomixis is functional in triploids and associated with drastic meiotic abnormalities. Selection acts to stabilise developmental patterns and to tolerate endosperm dosage balance shifts which facilitates successful seed set and establishment of apomictic lineages.
Frontiers in Plant Science | 2015
Diego Hojsgaard; Elvira Hörandl
Genome evolution in asexual organisms is theoretically expected to be shaped by various factors: first, hybrid origin, and polyploidy confer a genomic constitution of highly heterozygous genotypes with multiple copies of genes; second, asexuality confers a lack of recombination and variation in populations, which reduces the efficiency of selection against deleterious mutations; hence, the accumulation of mutations and a gradual increase in mutational load (Muller’s ratchet) would lead to rapid extinction of asexual lineages; third, allelic sequence divergence is expected to result in rapid divergence of lineages (Meselson effect). Recent transcriptome studies on the asexual polyploid complex Ranunculus auricomus using single-nucleotide polymorphisms confirmed neutral allelic sequence divergence within a short time frame, but rejected a hypothesis of a genome-wide accumulation of mutations in asexuals compared to sexuals, except for a few genes related to reproductive development. We discuss a general model that the observed incidence of facultative sexuality in plants may unmask deleterious mutations with partial dominance and expose them efficiently to purging selection. A little bit of sex may help to avoid genomic decay and extinction.
New Phytologist | 2016
Agnes S. Dellinger; Franz Essl; Diego Hojsgaard; Bernhard Kirchheimer; Simone Klatt; Wayne Dawson; Jan Pergl; Petr Pyšek; Mark van Kleunen; Ewald Weber; Marten Winter; Elvira Hörandl; Stefan Dullinger
Summary Biological invasions can be associated with shifts of the species’ climatic niches but the incidence of such shifts is under debate. The reproductive system might be a key factor controlling such shifts because it influences a species’ evolutionary flexibility. However, the link between reproductive systems and niche dynamics in plant invasions has been little studied so far. We compiled global occurrence data sets of 13 congeneric sexual and apomictic species pairs, and used principal components analysis (PCA) and kernel smoothers to compare changes in climatic niche optima, breadths and unfilling/expansion between native and alien ranges. Niche change metrics were compared between sexual and apomictic species. All 26 species showed changes in niche optima and/or breadth and 14 species significantly expanded their climatic niches. However, we found no effect of the reproductive system on niche dynamics. Instead, species with narrower native niches showed higher rates of niche expansion in the alien ranges. Our results suggest that niche shifts are frequent in plant invasions but evolutionary potential may not be of major importance for such shifts. Niche dynamics rather appear to be driven by changes of the realized niche without adaptive change of the fundamental climatic niche.
Frontiers in Plant Science | 2016
Simone Klatt; Franz Hadacek; Ladislav Hodač; Gina Brinkmann; Marius Eilerts; Diego Hojsgaard; Elvira Hörandl
Meiosis, the key step of sexual reproduction, persists in facultative apomictic plants functional to some extent. However, it still remains unclear how and why proportions of reproductive pathways vary under different environmental stress conditions. We hypothesized that oxidative stress mediates alterations of developmental pathways. In apomictic plants we expected that megasporogenesis, the stage directly after meiosis, would be more affected than later stages of seed development. To simulate moderate stress conditions we subjected clone-mates of facultative apomictic Ranunculus auricomus to 10 h photoperiods, reflecting natural conditions, and extended ones (16.5 h). Reproduction mode was screened directly after megasporogenesis (microscope) and at seed stage (flow cytometric seed screening). Targeted metabolite profiles were performed with HPLC–DAD to explore if and which metabolic reprogramming was caused by the extended photoperiod. Prolonged photoperiods resulted in increased frequencies of sexual vs. aposporous initials directly after meiosis, but did not affect frequencies of sexual vs. asexual seed formation. Changes in secondary metabolite profiles under extended photoperiods affected all classes of compounds, and c. 20% of these changes separated the two treatments. Unexpectedly, the renowned antioxidant phenylpropanoids and flavonoids added more to clone-mate variation than to treatment differentiation. Among others, chlorophyll degradation products, non-assigned phenolic compounds and more lipophilic metabolites also contributed to the dissimilarity of the metabolic profiles of plants that had been exposed to the two different photoperiods. The hypothesis of moderate light stress effects was supported by increased proportions of sexual megaspore development at the expense of aposporous initial formation. The lack of effects at the seed stage confirms the basic assumption that only meiosis and sporogenesis would be sensitive to light stress. The concomitant change of secondary metabolite profiles, as a systemic response at this early developmental stage, supports the notion that oxidative stress could have affected megasporogenesis by causing the observed metabolic reprogramming. Hypotheses of genotype-specific responses to prolonged photoperiods are rejected.
PLOS ONE | 2014
Ladislav Hodač; Armin Scheben; Diego Hojsgaard; Ovidiu Paun; Elvira Hörandl
The reconstruction of reticulate evolutionary histories in plants is still a major methodological challenge. Sequences of the ITS nrDNA are a popular marker to analyze hybrid relationships, but variation of this multicopy spacer region is affected by concerted evolution, high intraindividual polymorphism, and shifts in mode of reproduction. The relevance of changes in secondary structure is still under dispute. We aim to shed light on the extent of polymorphism within and between sexual species and their putative natural as well as synthetic hybrid derivatives in the Ranunculus auricomus complex to test morphology-based hypotheses of hybrid origin and parentage of taxa. We employed direct sequencing of ITS nrDNA from 68 individuals representing three sexuals, their synthetic hybrids and one sympatric natural apomict, as well as cloning of ITS copies in four representative individuals, RNA secondary structure analysis, and landmark geometric morphometric analysis on leaves. Phylogenetic network analyses indicate additivity of parental ITS variants in both synthetic and natural hybrids. The triploid synthetic hybrids are genetically much closer to their maternal progenitors, probably due to ploidy dosage effects, although exhibiting a paternal-like leaf morphology. The natural hybrids are genetically and morphologically closer to the putative paternal progenitor species. Secondary structures of ITS1-5.8S-ITS2 were rather conserved in all taxa. The observed similarities in ITS polymorphisms suggest that the natural apomict R. variabilis is an ancient hybrid of the diploid sexual species R. notabilis and the sexual species R. cassubicifolius. The additivity pattern shared by R. variabilis and the synthetic hybrids supports an evolutionary and biogeographical scenario that R. variabilis originated from ancient hybridization. Concerted evolution of ITS copies in R. variabilis is incomplete, probably due to a shift to asexual reproduction. Under the condition of comprehensive inter- and intraspecific sampling, ITS polymorphisms are powerful for elucidating reticulate evolutionary histories.