Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego I. Cattoni is active.

Publication


Featured researches published by Diego I. Cattoni.


Molecular Cell | 2015

Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging

Martial Marbouty; Antoine Le Gall; Diego I. Cattoni; Axel Cournac; Alan Koh; Jean-Bernard Fiche; Julien Mozziconacci; Heath Murray; Romain Koszul

Chromosomes of a broad range of species, from bacteria to mammals, are structured by large topological domains whose precise functional roles and regulatory mechanisms remain elusive. Here, we combine super-resolution microscopies and chromosome-capture technologies to unravel the higher-order organization of the Bacillus subtilis chromosome and its dynamic rearrangements during the cell cycle. We decipher the fine 3D architecture of the origin domain, revealing folding motifs regulated by condensin-like complexes. This organization, along with global folding throughout the genome, is present before replication, disrupted by active DNA replication, and re-established thereafter. Single-cell analysis revealed a strict correspondence between sub-cellular localization of origin domains and their condensation state. Our results suggest that the precise 3D folding pattern of the origin domain plays a role in the regulation of replication initiation, chromosome organization, and DNA segregation.


Biochimica et Biophysica Acta | 2009

Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins

Diego I. Cattoni; Sergio B. Kaufman; F. Luis González Flecha

Although 1-anilino-naphthalene-8-sulfonate (ANS) has been widely used in protein folding and binding studies, the detailed mechanism of this interaction is not fully understood. In this work the binding of ANS was analyzed at pre-equilibrium and equilibrium conditions using bovine serum albumin (BSA) as model. We employed a combined approach including the analysis of fluorescence, near-UV circular dichroism and isothermal titration calorimetric data. Experiments at equilibrium with these techniques identify three ANS molecules bound at hydrophobic cavities in BSA. Pre-equilibrium fluorescence analysis unambiguously indicated that the binding of ANS at hydrophobic cavities of BSA occurs at two different and independent classes of sites with similar affinities and quantum yields, two features that are undetectable by the equilibrium analysis. The binding of ANS to the first site is thermodynamically favored by similar contributions of the enthalpic (DeltaH = -22 kJ/mol) and entropic terms (-TDeltaS = -17 kJ/mol), while the binding to the second site is enthalpically driven (DeltaH = -31 kJ/mol; -TDeltaS = -0.6 kJ/mol). Complementary information from molecular docking showed three ANS molecules bound at hydrophobic cavities in BSA subdomains IIA and IIIA with binding affinities in the order of those found experimentally and three additional ANS molecules bound at water exposed sites.


PLOS Biology | 2013

Recruitment, Assembly, and Molecular Architecture of the SpoIIIE DNA Pump Revealed by Superresolution Microscopy

Jean-Bernard Fiche; Diego I. Cattoni; Nele Diekmann; Julio Mateos Langerak; Caroline Clerté; Catherine A. Royer; Emmanuel Margeat; Thierry Doan

Super-resolution and fluctuation microscopy in a model DNA-segregation system reveal the architecture and assembly mechanism of the motor responsible for DNA translocation during bacterial cell division.


Cell systems | 2015

Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus

Aurore Sanchez; Diego I. Cattoni; Jean-Charles Walter; Jérôme Rech; Andrea Parmeggiani; Jean-Yves Bouet

Many canonical processes in molecular biology rely on the dynamic assembly of higher-order nucleoprotein complexes. In bacteria, the assembly mechanism of ParABS, the nucleoprotein super-complex that actively segregates the bacterial chromosome and many plasmids, remains elusive. We combined super-resolution microscopy, quantitative genome-wide surveys, biochemistry, and mathematical modeling to investigate the assembly of ParB at the centromere-like sequences parS. We found that nearly all ParB molecules are actively confined around parS by a network of synergistic protein-protein and protein-DNA interactions. Interrogation of the empirically determined, high-resolution ParB genomic distribution with modeling suggests that instead of binding only to specific sequences and subsequently spreading, ParB binds stochastically around parS over long distances. We propose a new model for the formation of the ParABS partition complex based on nucleation and caging: ParB forms a dynamic lattice with the DNA around parS. This assembly model and approach to characterizing large-scale, dynamic interactions between macromolecules may be generalizable to many unrelated machineries that self-assemble in superstructures.


Current Opinion in Microbiology | 2012

Single-molecule super-resolution imaging in bacteria.

Diego I. Cattoni; Jean-Bernard Fiche

Bacteria have evolved complex, multi-component cellular machineries to carry out fundamental cellular processes such as cell division/separation, locomotion, protein secretion, DNA transcription/replication, or conjugation/competence. Diffraction of light has so far restricted the use of conventional fluorescence microscopy to reveal the composition, internal architecture and dynamics of these important machineries. This review describes some of the more recent advances on single-molecule super-resolution microscopy methods applied to bacteria and highlights their application to chemotaxis, cell division, DNA segregation, and DNA transcription machineries. Finally, we discuss some of the lessons learned from this approach, and future perspectives.


EMBO Reports | 2013

SpoIIIE mechanism of directional translocation involves target search coupled to sequence‐dependent motor stimulation

Diego I. Cattoni; Osvaldo Chara; Cédric Godefroy; Emmanuel Margeat; Sonia Trigueros; Pierre-Emmanuel Milhiet

SpoIIIE/FtsK are membrane‐anchored, ATP‐fuelled, directional motors responsible for chromosomal segregation in bacteria. Directionality in these motors is governed by interactions between specialized sequence‐recognition modules (SpoIIIE‐γ/FtsK‐γ) and highly skewed chromosomal sequences (SRS/KOPS). Using a new combination of ensemble and single‐molecule methods, we dissect the series of steps required for SRS localization and motor activation. First, we demonstrate that SpoIIIE/DNA association kinetics are sequence independent, with binding specificity being uniquely determined by dissociation. Next, we show by single‐molecule and modelling methods that hexameric SpoIIIE binds DNA non‐specifically and finds SRS by an ATP‐independent target search mechanism, with ensuing oligomerization and binding of SpoIIIE‐γ to SRS triggering motor stimulation. Finally, we propose a new model that provides an entirely new interpretation of previous observations for the origin of SRS/KOPS‐directed translocation by SpoIIIE/FtsK.


PLOS ONE | 2013

Super-resolution imaging of bacteria in a microfluidics device.

Diego I. Cattoni; Jean-Bernard Fiche; Alessandro Valeri; Tâm Mignot

Bacteria have evolved complex, highly-coordinated, multi-component cellular engines to achieve high degrees of efficiency, accuracy, adaptability, and redundancy. Super-resolution fluorescence microscopy methods are ideally suited to investigate the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. These techniques require the long-term stability of samples, high signal-to-noise-ratios, low chromatic aberrations and surface flatness, conditions difficult to meet with traditional immobilization methods. We present a method in which cells are functionalized to a microfluidics device and fluorophores are injected and imaged sequentially. This method has several advantages, as it permits the long-term immobilization of cells and proper correction of drift, avoids chromatic aberrations caused by the use of different filter sets, and allows for the flat immobilization of cells on the surface. In addition, we show that different surface chemistries can be used to image bacteria at different time-scales, and we introduce an automated cell detection and image analysis procedure that can be used to obtain cell-to-cell, single-molecule localization and dynamic heterogeneity as well as average properties at the super-resolution level.


Archives of Biochemistry and Biophysics | 2008

Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus

Diego I. Cattoni; F. Luis González Flecha; José M. Argüello

Despite recent progress in understanding membrane protein folding, little is known about the mechanisms stabilizing these proteins. Here we characterize the kinetic thermal stability of CopA, a thermophilic P(IB)-type Cu+-ATPase from Archaeoglobus fulgidus. When heterologously expressed in Escherichia coli, purified and reconstituted in mixed micelles, CopA retained thermophilic characteristics with maximum activity at 75 degrees C. Incubation of CopA in the absence of substrates at temperatures in the 66-85 degrees C range led to an irreversible exponential decrease in enzyme activity suggesting a two-state process involving fully-active and inactive molecules. Although CopA inactivated much slower than mesophilic proteins, the activation energy was similar to that observed for mesophilic P-type ATPases. The inactivation process was found to be associated with the irreversible partial unfolding of the polypeptide chain, as assessed by Trp fluorescence, Phe UV spectroscopy, far UV circular dichroism, and 1-aniline-8-naphtalenesulfonate binding. However, the inactive thermally denatured protein still conserves large hydrophobic regions and considerable secondary structure.


Nature Communications | 2016

Bacterial partition complexes segregate within the volume of the nucleoid

Antoine Le Gall; Diego I. Cattoni; Baptiste Guilhas; Céline Mathieu-Demazière; Laura Oudjedi; Jean-Bernard Fiche; Jérôme Rech; Sara Abrahamsson; Heath Murray; Jean-Yves Bouet

Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes.


Nucleic Acids Research | 2014

Structure and DNA-binding properties of the Bacillus subtilis SpoIIIE DNA translocase revealed by single-molecule and electron microscopies

Diego I. Cattoni; Shreyasi Thakur; Cédric Godefroy; Antoine Le Gall; Joséphine Lai-Kee-Him; Pierre-Emmanuel Milhiet; Patrick Bron

SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. The loading model proposes that SpoIIIE/FtsK oligomerize exclusively on SpoIIIE recognition sequence/orienting polar sequences (SRS/KOPS) to accomplish directional DNA translocation, whereas the target search and activation mechanism proposes that pre-assembled SpoIIIE/FtsK hexamers bind to non-specific DNA, reach SRS/KOPS by diffusion/3d hopping and activate at SRS/KOPS. Here, we employ single-molecule total internal reflection imaging, atomic force and electron microscopies and ensemble biochemical methods to test these predictions and obtain further insight into the SpoIIIE–DNA mechanism of interaction. First, we find that SpoIIIE binds DNA as a homo-hexamer with neither ATP binding nor hydrolysis affecting the binding mechanism or affinity. Second, we show that hexameric SpoIIIE directly binds to double-stranded DNA without requiring the presence of SRS or free DNA ends. Finally, we find that SpoIIIE hexamers can show open and closed conformations in solution, with open-ring conformations most likely resembling a state poised to load to non-specific, double-stranded DNA. These results suggest how SpoIIIE and related ring-shaped motors may be split open to bind topologically closed DNA.

Collaboration


Dive into the Diego I. Cattoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osvaldo Chara

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Antoine Le Gall

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giacomo Cavalli

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge