Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Orzaez is active.

Publication


Featured researches published by Diego Orzaez.


Plant Physiology | 2005

Agroinjection of Tomato Fruits. A Tool for Rapid Functional Analysis of Transgenes Directly in Fruit

Diego Orzaez; Sophie Mirabel; Willemien H. Wieland; Antonio Granell

Transient expression of foreign genes in plant tissues is a valuable tool for plant biotechnology. To shorten the time for gene functional analysis in fruits, we developed a transient methodology that could be applied to tomato (Solanum lycopersicum cv Micro Tom) fruits. It was found that injection of Agrobacterium cultures through the fruit stylar apex resulted in complete fruit infiltration. This infiltration method, named fruit agroinjection, rendered high levels of 35S Cauliflower mosaic virus-driven β-glucuronidase and yellow fluorescence protein transient expression in the fruit, with higher expression levels around the placenta and moderate levels in the pericarp. Usefulness of fruit agroinjection was assayed in three case studies: (1) the heat shock regulation of an Arabidopsis (Arabidopsis thaliana) promoter, (2) the production of recombinant IgA antibodies as an example of molecular farming, and (3) the virus-induced gene silencing of the carotene biosynthesis pathway. In all three instances, this technology was shown to be efficient as a tool for fast transgene expression in fruits.


Plant Physiology | 2010

Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color

Ana-Rosa Ballester; Jos Molthoff; Ric C. H. de Vos; Bas te Lintel Hekkert; Diego Orzaez; Josefina-Patricia Fernandez-Moreno; Pasquale Tripodi; Silvana Grandillo; Cathie Martin; Jos Heldens; Marieke Ykema; Antonio Granell; Arnaud G. Bovy

The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum ‘Moneyberg’ and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit and suggest strongly that SlMYB12 is a likely candidate for the y mutation.


Journal of Biological Chemistry | 2008

Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases from Crocus sativus Are Both Involved in β-Ionone Release

Angela Rubio; José Luis Rambla; Marcella Santaella; M. Dolores Gómez; Diego Orzaez; Antonio Granell; Lourdes Gómez-Gómez

Saffron, the processed stigma of Crocus sativus, is characterized by the presence of several apocarotenoids that contribute to the color, flavor, and aroma of the spice. However, little is known about the synthesis of aroma compounds during the development of the C. sativus stigma. The developing stigma is nearly odorless, but before and at anthesis, the aromatic compound β-ionone becomes the principal norisoprenoid volatile in the stigma. In this study, four carotenoid cleavage dioxygenase (CCD) genes, CsCCD1a, CsCCD1b, CsCCD4a, and CsCCD4b, were isolated from C. sativus. Expression analysis showed that CsCCD1a was constitutively expressed, CsCCD1b was unique to the stigma tissue, but only CsCCD4a and -b had expression patterns consistent with the highest levels of β-carotene and emission of β-ionone derived during the stigma development. The CsCCD4 enzymes were localized in plastids and more specifically were present in the plastoglobules. The enzymatic activities of CsCCD1a, CsCCD1b, and CsCCD4 enzymes were determined by Escherichia coli expression, and subsequent analysis of the volatile products was generated by GC/MS. The four CCDs fell in two phylogenetically divergent dioxygenase classes, but all could cleave β-carotene at the 9,10(9′,10′) positions to yield β-ionone. The data obtained suggest that all four C. sativus CCD enzymes may contribute in different ways to the production of β-ionone. In addition, the location and precise timing of β-ionone synthesis, together with its known activity as a fragrance and insect attractant, suggest that this volatile may have a role in Crocus pollination.


PLOS ONE | 2011

GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

Alejandro Sarrion-Perdigones; Erica Elvira Falconi; Sara I. Zandalinas; Paloma Juárez; Asun Fernández-del-Carmen; Antonio Granell; Diego Orzaez

Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described.


FEBS Letters | 1997

The plant homologue of the defender against apoptotic death gene is down-regulated during senescence of flower petals.

Diego Orzaez; Antonio Granell

© 1997 Federation of European Biochemical Societies.


Plant Physiology | 2013

GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology

Alejandro Sarrion-Perdigones; Marta Vazquez-Vilar; Jorge Palací; Bas Castelijns; Javier Forment; Peio Ziarsolo; José Blanca; Antonio Granell; Diego Orzaez

GoldenBraid 2.0 is a comprehensive technological framework that facilitates the construction of increasingly complex multigene structures and exchange of genetic building blocks. Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.


Current Biology | 2013

Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold

Yang Zhang; Eugenio Butelli; Rosalba De Stefano; Henk-jan Schoonbeek; Andreas Magusin; Chiara Pagliarani; Nikolaus Wellner; Lionel Hill; Diego Orzaez; Antonio Granell; Jonathan D. G. Jones; Cathie Martin

Summary Shelf life is an important quality trait for many fruit, including tomatoes. We report that enrichment of anthocyanin, a natural pigment, in tomatoes can significantly extend shelf life. Processes late in ripening are suppressed by anthocyanin accumulation, and susceptibility to Botrytis cinerea, one of the most important postharvest pathogens, is reduced in purple tomato fruit. We show that reduced susceptibility to B. cinerea is dependent specifically on the accumulation of anthocyanins, which alter the spreading of the ROS burst during infection. The increased antioxidant capacity of purple fruit likely slows the processes of overripening. Enhancing the levels of natural antioxidants in tomato provides a novel strategy for extending shelf life by genetic engineering or conventional breeding.


Plant Physiology | 2009

A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation.

Diego Orzaez; Aurora Medina; Sara Torre; Josefina Patricia Fernández-Moreno; José Luis Rambla; Asun Fernández-del-Carmen; Eugenio Butelli; Cathie Martin; Antonio Granell

Virus-induced gene silencing (VIGS) is a powerful tool for reverse genetics in tomato (Solanum lycopersicum). However, the irregular distribution of the effects of VIGS hampers the identification and quantification of nonvisual phenotypes. To overcome this limitation, a visually traceable VIGS system was developed for fruit, comprising two elements: (1) a transgenic tomato line (Del/Ros1) expressing Antirrhinum majus Delila and Rosea1 transcription factors under the control of the fruit-specific E8 promoter, showing a purple-fruited, anthocyanin-rich phenotype; and (2) a modified tobacco rattle virus VIGS vector incorporating partial Rosea1 and Delila sequences, which was shown to restore the red-fruited phenotype upon agroinjection in Del/Ros1 plants. Dissection of silenced areas for subsequent chemometric analysis successfully identified the relevant metabolites underlying gene function for three tomato genes, phytoene desaturase, TomloxC, and SlODO1, used for proof of concept. The C-6 aldehydes derived from lipid 13-hydroperoxidation were found to be the volatile compounds most severely affected by TomloxC silencing, whereas geranial and 6-methyl-5-hepten-2-one were identified as the volatiles most severely reduced by phytoene desaturase silencing in ripening fruit. In a third example, silencing of SlODO1, a tomato homolog of the ODORANT1 gene encoding a myb transcription factor, which regulates benzenoid metabolism in petunia (Petunia hybrida) flowers, resulted in a sharp accumulation of benzaldehyde in tomato fruit. Together, these results indicate that fruit VIGS, enhanced by anthocyanin monitoring, can be a powerful tool for reverse genetics in the study of the metabolic networks operating during fruit ripening.


New Phytologist | 2015

Standards for plant synthetic biology: a common syntax for exchange of DNA parts

Nicola J. Patron; Diego Orzaez; Sylvestre Marillonnet; Heribert Warzecha; Colette Matthewman; Mark Youles; Oleg Raitskin; Aymeric Leveau; Gemma Farré; Christian Rogers; Alison G. Smith; Julian M. Hibberd; Alex A. R. Webb; James C. Locke; Sebastian Schornack; Jim Ajioka; David C. Baulcombe; Cyril Zipfel; Sophien Kamoun; Jonathan D. G. Jones; Hannah Kuhn; Silke Robatzek; H. Peter van Esse; Dale Sanders; Giles E.D. Oldroyd; Cathie Martin; Rob Field; Sarah E. O'Connor; Samantha Fox; Brande B. H. Wulff

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.


Plant Biotechnology Journal | 2009

A multisite gateway‐based toolkit for targeted gene expression and hairpin RNA silencing in tomato fruits

Leandro Hueso Estornell; Diego Orzaez; Lucas López-Peña; Benito Pineda; María Teresa Antón; Vicente Moreno; Antonio Granell

A collection of fruit promoters, reporter genes and protein tags has been constructed in a triple-gateway format, a recombination-based cloning system that facilitates the tandem assembly of three DNA fragments into plant expression vectors. The new pENFRUIT collection includes, among others, the classical tomato-ripening promoters E8 and 2A11 and a set of six new tomato promoters. The new promoter activities were characterized in both transient assays and stable transgenic plants. The range of expression of the new promoters comprises strong (PNH, PLI), medium (PLE, PFF, PHD) and weak (PSN) promoters driving gene expression preferentially in the fruit, and covering a wide range of tissues and developmental stages. Together, a total of 78 possible combinations for the expression of a gene of interest in the fruit, plus a set of five reporters for new promoter analysis, was made available in the current collection. Moreover, the pENFRUIT promoter collection is adaptable to hairpin RNA strategies aimed at tissue/organ-specific gene silencing with only an additional cloning step. The pENFRUIT toolkit broadens the spectrum of promoter activities available for fruit biotechnology and fundamental research, and bypasses technical difficulties of current ligase-dependent cloning techniques in the construction of fruit expression cassettes. The pENFRUIT vector collection is available for the research community in a plasmid repository, facilitating its accessibility.

Collaboration


Dive into the Diego Orzaez's collaboration.

Top Co-Authors

Avatar

Antonio Granell

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Alejandro Sarrion-Perdigones

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Asun Fernández-del-Carmen

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Paloma Juárez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis Rambla

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Blanca

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

José Manuel Julve

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Marta Vazquez-Vilar

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge