Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego Stéfani T. Martinez is active.

Publication


Featured researches published by Diego Stéfani T. Martinez.


Colloids and Surfaces B: Biointerfaces | 2014

Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets.

Andreia Fonseca de Faria; Diego Stéfani T. Martinez; Stela Maris Meister Meira; Ana Carolina Mazarin de Moraes; Adriano Brandelli; Antonio G. Souza Filho; Oswaldo Luiz Alves

This work reports on the preparation, characterization and antibacterial activity of a nanocomposite formed from graphene oxide (GO) sheets decorated with silver nanoparticles (GO-Ag). The GO-Ag nanocomposite was prepared in the presence of AgNO3 and sodium citrate. The physicochemical characterization was performed by UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy (TEM). The average size of the silver nanoparticles anchored on the GO surface was 7.5 nm. Oxidation debris fragments (a byproduct adsorbed on the GO surface) were found to be crucial for the nucleation and growth of the silver nanoparticles. The antibacterial activity of the GO and GO-Ag nanocomposite against the microorganism Pseudomonas aeruginosa was investigated using the standard counting plate methodology. The GO dispersion showed no antibacterial activity against P. aeruginosa over the concentration range investigated. On the other hand, the GO-Ag nanocomposite displayed high biocidal activity with a minimum inhibitory concentration ranging from 2.5 to 5.0 μg/mL. The anti-biofilm activity toward P. aeruginosa adhered on stainless steel surfaces was also investigated. The results showed a 100% inhibition rate of the adhered cells after exposure to the GO-Ag nanocomposite for one hour. To the best of our knowledge, this work provides the first direct evidence that GO-Ag nanocomposites can inhibit the growth of microbial adhered cells, thus preventing the process of biofilm formation. These promising results support the idea that GO-Ag nanocomposites may be applied as antibacterial coatings material to prevent the development of biofilms in food packaging and medical devices.


Journal of Nanobiotechnology | 2015

Silver nanoparticle protein corona and toxicity: a mini-review

Nelson Durán; Camila P. Silveira; Marcela Durán; Diego Stéfani T. Martinez

Silver nanoparticles are one of the most important materials in the nanotechnology industry. Additionally, the protein corona is emerging as a key entity at the nanobiointerface; thus, a comprehensive understanding of the interactions between proteins and silver nanoparticles is imperative. Therefore, literature reporting studies involving both single molecule protein coronas (i.e., bovine and human serum albumin, tubulin, ubiquitin and hyaluronic-binding protein) and complex protein coronas (i.e., fetal bovine serum and yeast extract proteins) were selected to demonstrate the effects of protein coronas on silver nanoparticle cytotoxicity and antimicrobial activity. There is evidence that distinct and differential protein components may yield a “protein corona signature” that is related to the size and/or surface curvature of the silver nanoparticles. Therefore, the formation of silver nanoparticle protein coronas together with the biological response to these coronas (i.e., oxidative stress, inflammation and cytotoxicity) as well as other cellular biophysicochemical mechanisms (i.e., endocytosis, biotransformation and biodistribution) will be important for nanomedicine and nanotoxicology. Researchers may benefit from the information contained herein to improve biotechnological applications of silver nanoparticles and to address related safety concerns. In summary, the main aim of this mini-review is to highlight the relationship between the formation of silver nanoparticle protein coronas and toxicity.


ACS Applied Materials & Interfaces | 2013

Influence of protein corona on the transport of molecules into cells by mesoporous silica nanoparticles.

Amauri J. Paula; Roberto T. Araujo Júnior; Diego Stéfani T. Martinez; Edgar J. Paredes-Gamero; Helena B. Nader; Nelson Durán; Giselle Z. Justo; Oswaldo Luiz Alves

Although there are several studies reporting the promising biological efficiency of mesoporous silica nanoparticles (loaded with antitumoral drugs) against cancer cells and tumors, there are no reports on the influence of the bio-nano interface interactions on the molecular diffusion process occurring along their pores. In this context, we show here that the protein coating formed on multifunctionalized colloidal mesoporous silica nanoparticles (MSNs) dispersed in a cell culture medium decreases the release of camptothecin (CPT, a hydrophobic antitumoral drug) from the pores of MSNs. This effect is related to the adsorption of biomolecules on the nanoparticle surface, which partially blocks the pores. Parallely, the hydrophobic functionalization inside the pores can offer suitable sites for the adsorption of other molecules present in the cell culture medium depending on the hydrophobicity, size, and conformation aspects of these molecules and adsorption sites of MSNs. Thus, the molecular cargo loaded in the pores (i.e. CPT) can be replaced by specific molecules present in the dispersion medium. As a consequence, we show that a non-permeable cellular staining molecule such as SYTOX green can be incorporated in MSNs through this mechanism and internalized by cells in an artificial fashion. By extrapolating this phenomenon for applications in vivo, one has to consider now the possible manifestation of unpredicted biological effects from the use of porous silica nanoparticles and others with similar structure due to these internalization aspects.


Journal of the Brazilian Chemical Society | 2012

Suppression of the hemolytic effect of mesoporous silica nanoparticles after protein corona interaction: independence of the surface microchemical environment

Amauri J. Paula; Diego Stéfani T. Martinez; Roberto T. Araujo Júnior; Antonio G. Souza Filho; Oswaldo Luiz Alves

Mesoporous silica nanoparticles are known to induce the hemolysis of human red blood cells (RBCs) when citotoxicity assays are performed in a phosphate buffer solution (PBS). However, in a more realistic approach, the presence of blood plasma biomolecules must be considered in any nanotoxicological evaluation of porous SiO2 nanoparticles when biomedical applications through intravenous administration are aimed. In this context, it is demonstrated in this work that porous silica nanoparticles do not induce any cytotoxic effect on RBCs when hemolysis assay is done in the presence of blood plasma, regardless the surface charge (positive or negative) of the nanoparticle. The absence of hemolysis is mainly associated with the adsorption of plasma proteins on the nanoparticle surface, which leads to the formation of a stable protein coating (called protein corona or PC) that shields the original microchemical environment of bare nanoparticles.


Current Topics in Medicinal Chemistry | 2015

Graphene oxide: a carrier for pharmaceuticals and a scaffold for cell interactions.

Nelson Durán; Diego Stéfani T. Martinez; Camila P. Silveira; Marcela Durán; Ana Carolina Mazarin de Moraes; Mateus Batista Simões; Oswaldo Luiz Alves; Wagner José Fávaro

During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.


ACS Applied Materials & Interfaces | 2014

Topography-driven bionano-interactions on colloidal silica nanoparticles

Amauri J. Paula; Camila P. Silveira; Diego Stéfani T. Martinez; Antonio G. Souza Filho; Fabian V. Romero; Leandro C. Fonseca; Ljubica Tasic; Oswaldo Luiz Alves; Nelson Durán

We report here that the surface topography of colloidal mesoporous silica nanoparticles (MSNs) plays a key role on their bionano-interactions by driving the adsorption of biomolecules on the nanoparticle through a matching mechanism between the surface cavities characteristics and the biomolecules stereochemistry. This conclusion was drawn by analyzing the biophysicochemical properties of colloidal MSNs in the presence of single biomolecules, such as alginate or bovine serum albumin (BSA), as well as dispersed in a complex biofluid, such as human blood plasma. When dispersed in phosphate buffered saline media containing alginate or BSA, monodisperse spherical MSNs interact with linear biopolymers such as alginate and with a globular protein such as bovine serum albumin (BSA) independently of the surface charge sign (i.e. positive or negative), thus leading to a decrease in the surface energy and to the colloidal stabilization of these nanoparticles. In contrast, silica nanoparticles with irregular surface topographies are not colloidally stabilized in the presence of alginate but they are electrosterically stabilized by BSA through a sorption mechanism that implies reversible conformation changes of the protein, as evidenced by circular dichroism (CD). The match between the biomolecule size and stereochemistry with the nanoparticle surface cavities characteristics reflects on the nanoparticle surface area that is accessible for each biomolecule to interact and stabilize any non-rigid nanoparticles. On the other hand, in contact with variety of biomolecules such as those present in blood plasma (55%), MSNs are colloidally stabilized regardless of the topography and surface charge, although the identity of the protein corona responsible for this stabilization is influenced by the surface topography and surface charge. Therefore, the biofluid in which nanoparticles are introduced plays an important role on their physicochemical behavior synergistically with their inherent characteristics (e.g., surface topography).


Journal of Physics: Conference Series | 2013

Carbon nanotubes enhanced the lead toxicity on the freshwater fish

Diego Stéfani T. Martinez; Oswaldo Luiz Alves; Edison Barbieri

Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.


Science of The Total Environment | 2016

Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment

Suely Patrícia Costa Gonçalves; Mathias Strauss; Fabrício S. Delite; Zaira Clemente; Vera L.S.S. de Castro; Diego Stéfani T. Martinez

Activated carbon from pyrolysed sugarcane bagasse (ACPB) presented pore size ranges from 1.0 to 3.5nm, and surface area between 1200 and 1400m(2)g(-1) that is higher than commonly observed to commercial activated carbon. The ACPB material was successfully loaded with of silver nanoparticles with diameter around 35nm (0.81wt.%). X-ray photoelectron spectroscopy (XPS) analyses showed that the material surface contains metallic/Ag(0) (93.60wt.%) and ionic/Ag(+) states (6.40wt.%). The adsorption capacity of organic model molecules (i.e. methylene blue and phenol) was very efficient to ACPB and ACPB loaded with silver nanoparticles (ACPB-AgNP), indicating that the material modification with silver nanoparticles has not altered its adsorption capacity. ACPB-AgNP inhibited bacteria growth (Escherichia coli), it is a promising advantage for the use of these materials in wastewater treatment and water purification processes. However, ACPB-AgNP showed environmental risks, with toxic effect to the aquatic organism Hydra attenuata (i.e. LC50 value of 1.94mgL(-1)), and it suppressed root development of Lycopersicum esculentum plant (tomato). Finally, this work draw attention for the environmental implications of activated carbon materials modified with silver nanoparticles.


Journal of the Brazilian Chemical Society | 2013

New Hybrid Material Based on Layered Double Hydroxides and Biogenic Silver Nanoparticles: Antimicrobial Activity and Cytotoxic Effect

Priscyla D. Marcato; Nátalia Valenga Parizotto; Diego Stéfani T. Martinez; Amauri J. Paula; Iasmin R. Ferreira; Patrícia da Silva Melo; Nelson Durán; Oswaldo Luiz Alves

Layered double hydroxides (LDHs) have been widely investigated due to their several applications in the material and biotechnology industries. The combination of silver nanoparticles with biocompatible LDH material can create a new hybrid material with new properties. In this work, biogenic silver nanoparticles (AgNPbio) were associated with Mg-Al LDH to obtain the hybrid material LDH-AgNPbio. The new hybrid material obtained was characterized by X-ray diffractometry (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectrometry (ICP-OES) and Fourier transform infrared spectroscopy (FTIR). LDH was efficient to absorb silver nanoparticles due to an opposite surface charge between AgNPbio (ζ = -13.2 mV) and LDH (ζ = +3.2 mV). Furthermore, AgNPbio was not lixiviated from LDH-AgNPbio, even after five washes, indicating a strong interaction. An important property of this hybrid material was its antimicrobial activity against Staphylococcus aureus and Escherichia coli and absence of cytotoxic effect to fibroblast cell (V79). This hybrid material is an interesting and promising nanobiocomposite for biomedical and cosmetic applications.


Journal of Insect Science | 2012

Insecticidal Effect of Labramin, a Lectin—Like Protein Isolated from Seeds of the Beach Apricot Tree, Labramia bojeri, on the Mediterranean Flour Moth, Ephestia kuehniella

Diego Stéfani T. Martinez; Maria das Graças Machado Freire; Paulo Mazzafera; Roberto Theodoro Araujo-Júnior; Rafael Delmond Bueno; Maria Lígia Rodrigues Macedo

Abstract The objective of this work was to study the insecticidal effect of labramin, a protein that shows lectin—like properties. Labramin was isolated from seeds of the Beach Apricot tree, Labramia bojeri A. DC ex Dubard (Ericales: Sapotaceae), and assessed against the development of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), an important pest of stored products such as corn, wheat, rice, and flour. Results showed that labramin caused 90% larval mortality when incorporated in an artificial diet at a level of 1% (w/w). The presence of 0.25% labramin in the diet affected the larval and pupal developmental periods and the percentage of emerging adults. Treatments resulted in elevated levels of trypsin activity in midgut and fecal materials, indicating that labramin may have affected enzyme—regulatory mechanisms by perturbing peritrophic membranes in the midgut of is. kuehniella larvae. The results of dietary experiments with E. kuehniella larvae showed a reduced efficiency for the conversion of ingested and digested food, and an increase in approximate digestibility and metabolic cost. These findings suggest that labramin may hold promise as a control agent to engineer crop plants for insect resistance.

Collaboration


Dive into the Diego Stéfani T. Martinez's collaboration.

Top Co-Authors

Avatar

Oswaldo Luiz Alves

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Amauri J. Paula

Federal University of Ceará

View shared research outputs
Top Co-Authors

Avatar

Nelson Durán

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zaira Clemente

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Lidiane S. Franqui

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edison Barbieri

American Physical Therapy Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leandro C. Fonseca

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge