Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diego U. Ferreiro is active.

Publication


Featured researches published by Diego U. Ferreiro.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Localizing frustration in native proteins and protein assemblies

Diego U. Ferreiro; Joseph A. Hegler; Elizabeth A. Komives; Peter G. Wolynes

We propose a method of quantifying the degree of frustration manifested by spatially local interactions in protein biomolecules. This method of localization smoothly generalizes the global criterion for an energy landscape to be funneled to the native state, which is in keeping with the principle of minimal frustration. A survey of the structural database shows that natural proteins are multiply connected by a web of local interactions that are individually minimally frustrated. In contrast, highly frustrated interactions are found clustered on the surface, often near binding sites. These binding sites become less frustrated upon complex formation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

On the role of frustration in the energy landscapes of allosteric proteins

Diego U. Ferreiro; Joseph A. Hegler; Elizabeth A. Komives; Peter G. Wolynes

Natural protein domains must be sufficiently stable to fold but often need to be locally unstable to function. Overall, strong energetic conflicts are minimized in native states satisfying the principle of minimal frustration. Local violations of this principle open up possibilities to form the complex multifunnel energy landscapes needed for large-scale conformational changes. We survey the local frustration patterns of allosteric domains and show that the regions that reconfigure are often enriched in patches of highly frustrated interactions, consistent both with the idea that these locally frustrated regions may act as specific hinges or that proteins may “crack” in these locations. On the other hand, the symmetry of multimeric protein assemblies allows near degeneracy by reconfiguring while maintaining minimally frustrated interactions. We also anecdotally examine some specific examples of complex conformational changes and speculate on the role of frustration in the kinetics of allosteric change.


Nucleic Acids Research | 2012

Protein frustratometer: a tool to localize energetic frustration in protein molecules

Michael Jenik; R. Gonzalo Parra; Leandro G. Radusky; Adrián G. Turjanski; Peter G. Wolynes; Diego U. Ferreiro

The frustratometer is an energy landscape theory-inspired algorithm that aims at quantifying the location of frustration manifested in protein molecules. Frustration is a useful concept for gaining insight to the proteins biological behavior by analyzing how the energy is distributed in protein structures and how mutations or conformational changes shift the energetics. Sites of high local frustration often indicate biologically important regions involved in binding or allostery. In contrast, minimally frustrated linkages comprise a stable folding core of the molecule that is conserved in conformational changes. Here, we describe the implementation of these ideas in a webserver freely available at the National EMBNet node-Argentina, at URL: http://lfp.qb.fcen.uba.ar/embnet/.


Quarterly Reviews of Biophysics | 2014

Frustration in biomolecules.

Diego U. Ferreiro; Elizabeth A. Komives; Peter G. Wolynes

Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Consequences of localized frustration for the folding mechanism of the IM7 protein

Ludovico Sutto; Joachim Lätzer; Joseph A. Hegler; Diego U. Ferreiro; Peter G. Wolynes

In the laboratory, IM7 has been found to have an unusual folding mechanism in which an “on-pathway” intermediate with nonnative interactions is formed. We show that this intermediate is a consequence of an unusual cluster of highly frustrated interactions in the native structure. This cluster is involved in the binding of IM7 to its target, Colicin E7. Redesign of residues in this cluster to eliminate frustration is predicted by simulations to lead to faster folding without the population of an intermediate ensemble.


Biochemistry | 2010

Molecular Mechanisms of System Control of NF-κB Signaling by IκBα

Diego U. Ferreiro; Elizabeth A. Komives

The NF-kappaB family of transcription factors responds to inflammatory cytokines with rapid transcriptional activation and subsequent signal repression. Much of the system control depends on the unique characteristics of its major inhibitor, IkappaBalpha, which appears to have folding dynamics that underlie the biophysical properties of its activity. Theoretical folding studies followed by experiments have shown that a portion of the ankyrin repeat domain of IkappaBalpha folds on binding. In resting cells, IkappaBalpha is constantly being synthesized, but most of it is rapidly degraded, leaving only a very small pool of free IkappaBalpha. Nearly all of the NF-kappaB is bound to IkappaBalpha, resulting in near-complete inhibition of nuclear localization and transcriptional activation. Combined solution biophysical measurements and quantitative protein half-life measurements inside cells have allowed us to understand how the inhibition occurs, why IkappaBalpha can be degraded quickly in the free state but remain extremely stable in the bound state, and how signal activation and repression can be tuned by IkappaB folding dynamics. This review summarizes results of in vitro and in vivo experiments that converge demonstrating the effective interplay between biophysics and cell biology in understanding transcriptional control by the NF-kappaB signaling module.


Current Opinion in Structural Biology | 2008

Folding landscapes of ankyrin repeat proteins: experiments meet theory.

Doug Barrick; Diego U. Ferreiro; Elizabeth A. Komives

Nearly 6% of eukaryotic protein sequences contain ankyrin repeat (AR) domains, which consist of several repeats and often function in binding. AR proteins show highly cooperative folding despite a lack of long-range contacts. Both theory and experiment converge to explain that formation of the interface between elements is more favorable than formation of any individual repeat unit. IkappaBalpha and Notch both undergo partial folding upon binding perhaps influencing the binding free energy. The simple architecture, combined with identification of consensus residues that are important for stability, has enabled systematic perturbation of the energy landscape by single point mutations that affect stability or by addition of consensus repeats. The folding energy landscapes appear highly plastic, with small perturbations re-routing folding pathways.


PLOS Computational Biology | 2008

The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures.

Diego U. Ferreiro; Aleksandra M. Walczak; Elizabeth A. Komives; Peter G. Wolynes

Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions.


Journal of the American Chemical Society | 2011

Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes.

Patricio O. Craig; Joachim Lätzer; Patrick Weinkam; Ryan M. B. Hoffman; Diego U. Ferreiro; Elizabeth A. Komives; Peter G. Wolynes

Simulations based on perfectly funneled energy landscapes often capture many of the kinetic features of protein folding. We examined whether simulations based on funneled energy functions can also describe fluctuations in native-state protein ensembles. We quantitatively compared the site-specific local stability determined from structure-based folding simulations, with hydrogen exchange protection factors measured experimentally for ubiquitin, chymotrypsin inhibitor 2, and staphylococcal nuclease. Different structural definitions for the open and closed states based on the number of native contacts for each residue, as well as the hydrogen-bonding state, or a combination of both criteria were evaluated. The predicted exchange patterns agree with the experiments under native conditions, indicating that protein topology indeed has a dominant effect on the exchange kinetics. Insights into the simplest mechanistic interpretation of the amide exchange process were thus obtained.


Journal of Molecular Biology | 2003

A protein-DNA binding mechanism proceeds through multi-state or two-state parallel pathways.

Diego U. Ferreiro; Gonzalo de Prat-Gay

The DNA-binding mechanism of the dimeric C-terminal domain of the papillomavirus E2 protein with its specific DNA target was investigated and shown to proceed through two parallel pathways. A sequential multi-step reaction is initiated by the diffusion-controlled formation of an encounter complex, with no evidence of base sequence discrimination capacity. Following a substantial conformational rearrangement of the protein, a solvent exclusion step leading to the formation of a final protein-DNA complex was identified. This last step involves the largest burial of surface area from the interface and involves the consolidation of the direct readout of the DNA bases. Double-jump stopped-flow experiments allowed us to characterize the sequence of events and demonstrated that a fast-formed consolidated complex can take place through a parallel route. We present the simplest model for the overall mechanism with a description of all the intermediate species in energetic terms.

Collaboration


Dive into the Diego U. Ferreiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Gonzalo Parra

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Rocío Espada

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Gonzalo de Prat-Gay

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Alejandro D. Nadra

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo G. Alonso

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Thierry Mora

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge