Dies Meijer
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dies Meijer.
Nature | 2012
Ursula Fünfschilling; Lotti Marianna Supplie; Don J. Mahad; Susann Boretius; Aiman S. Saab; Julia M. Edgar; Bastian G. Brinkmann; Celia M. Kassmann; Iva D. Tzvetanova; Wiebke Möbius; Francisca Diaz; Dies Meijer; Ueli Suter; Bernd Hamprecht; Michael W. Sereda; Carlos T. Moraes; Jens Frahm; Sandra Goebbels; Klaus-Armin Nave
Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon–glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon–glia metabolic coupling serves a physiological function.
Science | 1996
Martine Jaegle; Wim Mandemakers; Ludo Broos; Ronald Zwart; Alar Karis; Pim Visser; Frank Grosveld; Dies Meijer
The POU transcription factor Oct-6, also known as SCIP or Tst-1, has been implicated as a major transcriptional regulator in Schwann cell differentiation. Microscopic and immunochemical analysis of sciatic nerves of Oct-6−/− mice at different stages of postnatal development reveals a delay in Schwann cell differentiation, with a transient arrest at the promyelination stage. Thus, Oct-6 appears to be required for the transition of promyelin cells to myelinating cells. Once these cells progress past this point, Oct-6 is no longer required, and myelination occurs normally.
Journal of Cell Biology | 2006
Christine E. Wong; Christian Paratore; María T. Dours-Zimmermann; Ariane Rochat; Thomas Pietri; Ueli Suter; Dieter R. Zimmermann; Sylvie Dufour; Jean Paul Thiery; Dies Meijer; Friedrich Beermann; Yann Barrandon; Lukas Sommer
Given their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell–like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures. To determine the origin of these cells, we genetically mapped the fate of neural crest cells in face and trunk skin of mouse. In whisker follicles of the face, many mesenchymal structures are neural crest derived and appear to contain cells with sphere-forming potential. In the trunk skin, however, sphere-forming neural crest–derived cells are restricted to the glial and melanocyte lineages. Thus, self-renewing cells in the adult skin can be obtained from several neural crest derivatives, and these are of distinct nature in face and trunk skin. These findings are relevant for the design of therapeutic strategies because the potential of stem and progenitor cells in vivo likely depends on their nature and origin.
Development | 2004
Nancy M. Joseph; Yoh Suke Mukouyama; Jack T. Mosher; Martine Jaegle; Steven A. Crone; Emma Louise Dormand; Kuo-Fen Lee; Dies Meijer; David J. Anderson; Sean J. Morrison
Neural crest stem cells (NCSCs) persist in peripheral nerves throughout late gestation but their function is unknown. Current models of nerve development only consider the generation of Schwann cells from neural crest, but the presence of NCSCs raises the possibility of multilineage differentiation. We performed Cre-recombinase fate mapping to determine which nerve cells are neural crest derived. Endoneurial fibroblasts, in addition to myelinating and non-myelinating Schwann cells, were neural crest derived, whereas perineurial cells, pericytes and endothelial cells were not. This identified endoneurial fibroblasts as a novel neural crest derivative, and demonstrated that trunk neural crest does give rise to fibroblasts in vivo, consistent with previous studies of trunk NCSCs in culture. The multilineage differentiation of NCSCs into glial and non-glial derivatives in the developing nerve appears to be regulated by neuregulin, notch ligands, and bone morphogenic proteins, as these factors are expressed in the developing nerve, and cause nerve NCSCs to generate Schwann cells and fibroblasts, but not neurons, in culture. Nerve development is thus more complex than was previously thought, involving NCSC self-renewal, lineage commitment and multilineage differentiation.
Nature | 2012
Weiming Ouyang; Will Liao; Chong T. Luo; Na Yin; Morgan Huse; Myoungjoo V. Kim; Min Peng; Pamela Chan; Qian Ma; Yifan Mo; Dies Meijer; Keji Zhao; Alexander Y. Rudensky; Gurinder Singh Atwal; Michael Q. Zhang; Ming O. Li
Regulatory T (Treg) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling Treg cell homeostasis and function, whereas the early Treg-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the Treg-cell-commitment stage to control Treg cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of Treg cell function. Treg cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with Treg-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of Treg cells. Genome-wide analysis of Foxo1 binding sites reveals ∼300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt–Foxo1 signalling module controls a novel genetic program indispensable for Treg cell function.
Nature Neuroscience | 2009
Ashwin Woodhoo; Maria B Duran Alonso; Anna Droggiti; Mark Turmaine; Maurizio D'Antonio; David Parkinson; D Wilton; Raya Al-Shawi; Paul Simons; Jie Shen; François Guillemot; Freddy Radtke; Dies Meijer; M. Laura Feltri; Lawrence Wrabetz; Rhona Mirsky; Kristjan R. Jessen
Notch signaling is central to vertebrate development, and analysis of Notch has provided important insights into pathogenetic mechanisms in the CNS and many other tissues. However, surprisingly little is known about the role of Notch in the development and pathology of Schwann cells and peripheral nerves. Using transgenic mice and cell cultures, we found that Notch has complex and extensive regulatory functions in Schwann cells. Notch promoted the generation of Schwann cells from Schwann cell precursors and regulated the size of the Schwann cell pool by controlling proliferation. Notch inhibited myelination, establishing that myelination is subject to negative transcriptional regulation that opposes forward drives such as Krox20. Notably, in the adult, Notch dysregulation resulted in demyelination; this finding identifies a signaling pathway that induces myelin breakdown in vivo. These findings are relevant for understanding the molecular mechanisms that control Schwann cell plasticity and underlie nerve pathology, including demyelinating neuropathies and tumorigenesis.
Glia | 2008
John Svaren; Dies Meijer
During late fetal life, Schwann cells in the peripheral nerves singled out by the larger axons will transit through a promyelinating stage before exiting the cell cycle and initiating myelin formation. A network of extra‐ and intracellular signaling pathways, regulating a transcriptional program of cell differentiation, governs this progression of cellular changes, culminating in a highly differentiated cell. In this review, we focus on the roles of a number of transcription factors not only in myelination, during normal development, but also in demyelination, following nerve trauma. These factors include specification factors involved in early development of Schwann cells from neural crest (Sox10) as well as factors specifically required for transitions into the promyelinating and myelinating stages (Oct6/Scip and Krox20/Egr2). From this description, we can glean the first, still very incomplete, contours of a gene regulatory network that governs myelination and demyelination during development and regeneration.
Journal of Cell Biology | 2007
Yves Benninger; Tina Thurnherr; Jorge A. Pereira; Sven Krause; Xunwei Wu; Anna Chrostek-Grashoff; Dominik Herzog; Klaus-Armin Nave; Robin J.M. Franklin; Dies Meijer; Cord Brakebusch; Ueli Suter; João B. Relvas
During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific conditional gene targeting to show that members of the Rho GTPases, cdc42 and rac1, have different and essential roles in axon sorting by Schwann cells. Our results indicate that although cdc42 is required for normal Schwann cell proliferation, rac1 regulates Schwann cell process extension and stabilization, allowing efficient radial sorting of axon bundles.
Nature Neuroscience | 2013
Ruth M. Stassart; Robert Fledrich; Viktorija Velanac; Bastian G. Brinkmann; Markus H. Schwab; Dies Meijer; Michael W. Sereda; Klaus-Armin Nave
After peripheral nerve injury, axons regenerate and become remyelinated by resident Schwann cells. However, myelin repair never results in the original myelin thickness, suggesting insufficient stimulation by neuronal growth factors. Upon testing this hypothesis, we found that axonal neuregulin-1 (NRG1) type III and, unexpectedly, also NRG1 type I restored normal myelination when overexpressed in transgenic mice. This led to the observation that Wallerian degeneration induced de novo NRG1 type I expression in Schwann cells themselves. Mutant mice lacking a functional Nrg1 gene in Schwann cells are fully myelinated but exhibit impaired remyelination in adult life. We suggest a model in which loss of axonal contact triggers denervated Schwann cells to transiently express NRG1 as an autocrine/paracrine signal that promotes Schwann cell differentiation and remyelination.
Cancer Cell | 2008
Jianqiang Wu; Jon P. Williams; Tilat A. Rizvi; Jennifer J. Kordich; David P. Witte; Dies Meijer; Anat Stemmer-Rachamimov; Jose A. Cancelas; Nancy Ratner
Neurofibromatosis type 1 (Nf1) mutation predisposes to benign peripheral nerve (glial) tumors called neurofibromas. The point(s) in development when Nf1 loss promotes neurofibroma formation are unknown. We show that inactivation of Nf1 in the glial lineage in vitro at embryonic day 12.5 + 1, but not earlier (neural crest) or later (mature Schwann cell), results in colony-forming cells capable of multilineage differentiation. In vivo, inactivation of Nf1 using a DhhCre driver beginning at E12.5 elicits plexiform neurofibromas, dermal neurofibromas, and pigmentation. Tumor Schwann cells uniquely show biallelic Nf1 inactivation. Peripheral nerve and tumors contain transiently proliferating Schwann cells that lose axonal contact, providing insight into early neurofibroma formation. We suggest that timing of Nf1 mutation is critical for neurofibroma formation.