Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter E. Jenne is active.

Publication


Featured researches published by Dieter E. Jenne.


Nature Methods | 2008

Lifeact: a versatile marker to visualize F-actin.

Julia Riedl; Alvaro H. Crevenna; Kai Kessenbrock; Jerry Haochen Yu; Dorothee Neukirchen; Michal Bista; Frank Bradke; Dieter E. Jenne; Tad A. Holak; Zena Werb; Michael Sixt; Roland Wedlich-Söldner

Live imaging of the actin cytoskeleton is crucial for the study of many fundamental biological processes, but current approaches to visualize actin have several limitations. Here we describe Lifeact, a 17-amino-acid peptide, which stained filamentous actin (F-actin) structures in eukaryotic cells and tissues. Lifeact did not interfere with actin dynamics in vitro and in vivo and in its chemically modified peptide form allowed visualization of actin dynamics in nontransfectable cells.


Nature Medicine | 2009

Netting neutrophils in autoimmune small-vessel vasculitis.

Kai Kessenbrock; Markus Krumbholz; Ulf Schönermarck; Walter Back; Wolfgang Gross; Zena Werb; Hermann-Josef Gröne; Volker Brinkmann; Dieter E. Jenne

Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.


Immunity | 2001

Migratory Activity and Functional Changes of Green Fluorescent Effector Cells before and during Experimental Autoimmune Encephalomyelitis

Alexander Flügel; Tomasz Berkowicz; Thomas Ritter; Marta Labeur; Dieter E. Jenne; Zhaoxia Li; Joachim W. Ellwart; Michael Willem; Hans Lassmann; Hartmut Wekerle

Homing behavior and function of autoimmune CD4+ T cells in vivo was analyzed before and during EAE, using MBP-specific T cells retrovirally engineered to express the gene of green fluorescent protein. The cells migrate from parathymic lymph nodes to blood and to the spleen. Preceding disease onset, large numbers of effector cells invade the CNS, with only negligible numbers left in the periphery. In early EAE, most (>90%) infiltrating CD4+ cells were effector cells. Migratory effector cells downregulate activation markers (CD25, OX-40) but upregulate several chemokine receptors and adsorb MHC class II on their membranes. Within the CNS, the effector cells are reactivated, with upregulated proinflammatory cytokines and downmodulated T cell receptor-associated structures, presumably reflecting autoantigen recognition in situ.


Pharmacological Reviews | 2010

Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases

Brice Korkmaz; Marshall S. Horwitz; Dieter E. Jenne; Francis Gauthier

Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.


Trends in Biochemical Sciences | 1992

Clusterin: the intriguing guises of a widely expressed glycoprotein.

Dieter E. Jenne; Jürg Tschopp

The glycoprotein clusterin has recently entered the scientific arena in diverse guises. It forms high-density lipoprotein complexes with apolipoprotein A-I, participates in the terminal complement reaction and serves as a granule constituent in neuronal and endocrine cells. Apically secreted, it is also found in the male reproductive tract and the tubular lumen of epithelial ducts. Thus, it may serve important functions in tissue remodelling, immune defense and transport of biologically active peptides.


Nature Genetics | 2000

Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin

Eloisa S. Moreira; Tim Wiltshire; Georgine Faulkner; Antje Nilforoushan; Mariz Vainzof; Oscar T. Suzuki; Giorgio Valle; Roger H. Reeves; Mayana Zatz; Maria Rita Passos-Bueno; Dieter E. Jenne

Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A–H (refs 2–10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding γ-(ref. 14), α-(ref. 5), β-(refs 6,7) and δ (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C–F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11–12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11–12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.


Journal of Clinical Investigation | 2008

Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

Kai Kessenbrock; Leopold Fröhlich; Michael Sixt; Tim Lämmermann; Heiko Pfister; Andrew Bateman; Azzaq Belaaouaj; Johannes Ring; Markus Ollert; Reinhard Fässler; Dieter E. Jenne

Neutrophil granulocytes form the bodys first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex-mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents.


Immunological Reviews | 1988

Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation.

Dieter E. Jenne; Jürg Tschopp

The cytolytic potential of T effector cells appears to be intimately related to the presence of proteins stored in specialized cytoplasmic granules. A striking biological property of isolated granules is their lytic activity for a variety of target cells in a nonrestricted manner. Proteins contained within these granules of CTLs are specifically released upon target cell recognition. We have isolated and characterized six granule-associated proteins in two murine CTL lines in addition to the pore-forming and target membrane-disrupting perforin. Six full length cDNA clones have been identified in a CTL-specific cDNA expression library which code for the granule-associated serine esterases, designated as granzymes A to F. Granzymes A and B represent the genuine proteins encoded by the H factor/CTLA-3 cDNA and the CTLA-1/CCPI cDNA, respectively. The covalent amino acid structures of all six granzymes show the hallmarks for serine proteases and are highly related to that of rat mast cell protease I and II and cathepsin G, which have been found in granules of mast cells and neutrophilic granulocytes, respectively. The primary translation products are processed by removal of a hydrophobic signal peptide and a two residue-long propeptide at the amino-terminus. Immuno-electron microscopy shows that granzymes and perforin are stored together within secretory granules of CTLs. Simultaneous release of at least two of these granzymes has been observed during degranulation of a murine CTL line by anti-T3 antibodies. The biological role, particularly the proteolytic events elicited by granzyme A and other granzymes in the context of target cell recognition, are not known at present. It is unlikely that they form a proteolytic activation cascade together with pore-forming proteins analogous to the complement system. The strictly regulated secretion of granzymes and the lack of measurable enzymatic activity in the case of granzymes B, C, E and F towards a variety of synthetic substrates suggest a highly specific function for each of them.


Neurology | 2011

Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis

Anne-Katrin Pröbstel; Klaus Dornmair; R. Bittner; P. Sperl; Dieter E. Jenne; Sandra Magalhaes; A. Villalobos; Constanze Breithaupt; Robert Weissert; U. Jacob; Markus Krumbholz; T. Kuempfel; Astrid Blaschek; W. Stark; J. Gärtner; Daniela Pohl; Kevin Rostasy; Frank Weber; I. Forne; Mohsen Khademi; Tomas Olsson; Fabienne Brilot; Esther Tantsis; Russell C. Dale; Hartmut Wekerle; Reinhard Hohlfeld; Brenda Banwell; Amit Bar-Or; Edgar Meinl; Tobias Derfuss

Objective: To study the longitudinal dynamics of anti–myelin oligodendrocyte glycoprotein (MOG) autoantibodies in childhood demyelinating diseases. Methods: We addressed the kinetics of anti-MOG immunoglobulins in a prospective study comprising 77 pediatric patients. This was supplemented by a cross-sectional study analyzing 126 pediatric patients with acute demyelination and 62 adult patients with multiple sclerosis (MS). MOG-transfected cells were used for detection of antibodies by flow cytometry. Results: Twenty-five children who were anti-MOG immunoglobulin (Ig) positive at disease onset were followed for up to 5 years. Anti-MOG antibodies rapidly and continuously declined in all 16 monophasic patients with acute disseminated encephalomyelitis and in one patient with clinically isolated syndrome. In contrast, in 6 of 8 patients (75%) eventually diagnosed with childhood MS, the antibodies to MOG persisted with fluctuations showing a second increase during an observation period of up to 5 years. Antibodies to MOG were mainly IgG 1 and their binding was largely blocked by pathogenic anti-MOG antibodies derived from a spontaneous animal model of autoimmune encephalitis. The cross-sectional part of our study elaborated that anti-MOG Ig was present in about 25% of children with acute demyelination, but in none of the pediatric or adult controls. Sera from 4/62 (6%) adult patients with MS had anti-MOG IgG at low levels. Conclusions: The persistence or disappearance of antibodies to MOG may have prognostic relevance for acute childhood demyelination.


Journal of Experimental Medicine | 2013

MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies

Nicolas Molnarfi; Ulf Schulze-Topphoff; Martin S. Weber; Juan C. Patarroyo; Thomas Prod'homme; Michel Varrin-Doyer; Aparna Shetty; Christopher Linington; Anthony J. Slavin; Juan Hidalgo; Dieter E. Jenne; Hartmut Wekerle; Raymond A. Sobel; Claude C.A. Bernard; Mark J. Shlomchik; Scott S. Zamvil

Antigen presentation, but not antibody secretion, by B cells drives CNS autoimmunity induced by immunization with human MOG.

Collaboration


Dive into the Dieter E. Jenne's collaboration.

Top Co-Authors

Avatar

Brice Korkmaz

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Zimmer

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Marchand-Adam

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Gauthier

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge