Dieter Gelbmann
Intercell
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dieter Gelbmann.
Journal of Experimental Medicine | 2008
Carmen Giefing; Andreas Meinke; Markus Hanner; Tamás Henics; Duc Bui Minh; Dieter Gelbmann; Urban Lundberg; Beatrice Senn; Michael Schunn; André Habel; Birgitta Henriques-Normark; Åke Örtqvist; Mats Kalin; Alexander von Gabain; Eszter Nagy
Pneumococcus is one of the most important human pathogens that causes life-threatening invasive diseases, especially at the extremities of age. Capsular polysaccharides (CPSs) are known to induce protective antibodies; however, it is not feasible to develop CPS-based vaccines that cover all of the 90 disease-causing serotypes. We applied a genomic approach and described the antibody repertoire for pneumococcal proteins using display libraries expressing 15–150 amino acid fragments of the pathogens proteome. Serum antibodies of exposed, but not infected, individuals and convalescing patients identified the ANTIGENome of pneumococcus consisting of ∼140 antigens, many of them surface exposed. Based on several in vitro assays, 18 novel candidates were preselected for animal studies, and 4 of them showed significant protection against lethal sepsis. Two lead vaccine candidates, protein required for cell wall separation of group B streptococcus (PcsB) and serine/threonine protein kinase (StkP), were found to be exceptionally conserved among clinical isolates (>99.5% identity) and cross-protective against four different serotypes in lethal sepsis and pneumonia models, and have important nonredundant functions in bacterial multiplication based on gene deletion studies. We describe for the first time opsonophagocytic killing activity for pneumococcal protein antigens. A vaccine containing PcsB and StkP is intended for the prevention of infections caused by all serotypes of pneumococcus in the elderly and in children.
Molecular Microbiology | 2003
Agnieszka Dryla; Dieter Gelbmann; Alexander von Gabain; Eszter Nagy
Staphylococcus aureus is an extremely adaptable pathogen causing a wide variety of infections. Staphylococcal surface proteins that directly interact with host extracellular proteins greatly contribute to virulence and are involved in adhesion, immune escape and nutrient acquisition. In our extensive search for highly immunogenic, in vivo‐expressed, staphylococcal proteins, previously, we identified a novel member of the family of Gram‐positive anchor motif proteins with a predicted 895 amino acid long sequence. In order to determine the ligand for this novel LPXTG cell wall protein, we employed affinity purification of human plasma using the recombinant form of the protein. Two‐dimensional electrophoresis of eluted plasma proteins identified haptoglobin as a specific binding partner. Importantly, we also observed this specific ligand binding when living S. aureus cells were exposed to biotin‐labelled haptoglobin (Hp) in a FACS‐based assay. Targeted deletion of the gene eliminated Hp‐binding, a function that has not been attributed to S. aureus before. Based on these data we specified the protein as the staphylococcal haptoglobin receptor A (HarA). Similarly to other haptoglobin receptors identified in Gram‐negative pathogens, HarA binds not only Hp, but also haptoglobin‐haemoglobin complexes with an even higher affinity, as demonstrated in in vitro binding assays. Employing specific deletion mutants, ligand binding was localized to two homologous regions with about 145 amino acid residues located within the N‐terminal part of the protein. In addition, we demonstrated that expression of HarA was strictly controlled by iron through the iron‐dependent transcriptional regulator Fur. Based on these data we propose that HarA can be added to the list of staphylococcal virulence factors with a most likely function related to iron acquisition.
Journal of Bacteriology | 2007
Agnieszka Dryla; Bernd Hoffmann; Dieter Gelbmann; Carmen Giefing; Markus Hanner; Andreas Meinke; Annaliesa S. Anderson; Walter Koppensteiner; Robert Konrat; Alexander von Gabain; Eszter Nagy
Iron scavenging from the host is essential for the growth of pathogenic bacteria. In this study, we further characterized two staphylococcal cell wall proteins previously shown to bind hemoproteins. HarA and IsdB harbor homologous ligand binding domains, the so called NEAT domain (for “near transporter”) present in several surface proteins of gram-positive pathogens. Surface plasmon resonance measurements using glutathione S-transferase (GST)-tagged HarAD1, one of the ligand binding domains of HarA, and GST-tagged full-length IsdB proteins confirmed high-affinity binding to hemoglobin and haptoglobin-hemoglobin complexes with equilibrium dissociation constants (KD) of 5 to 50 nM. Haptoglobin binding could be detected only with HarA and was in the low micromolar range. In order to determine the fold of this evolutionarily conserved ligand binding domain, the untagged HarAD1 protein was subjected to nuclear magnetic resonance spectroscopy, which revealed an eight-stranded, purely antiparallel β-barrel with the strand order (-β1↓-β2↑-β3↓-β6↑-β5↓-β4↑-β7↓-β8↑), forming two Greek key motifs. Based on structural-homology searches, the topology of the HarAD1 domain resembles that of the immunoglobulin (Ig) fold family, whose members are involved in protein-protein interactions, but with distinct structural features. Therefore, we consider that the HarAD1/NEAT domain fold is a novel variant of the Ig fold that has not yet been observed in other proteins.
Infection and Immunity | 2010
Andrea Fritzer; Beatrice Senn; Duc Bui Minh; Markus Hanner; Dieter Gelbmann; Birgit Noiges; Tamás Henics; Kai Schulze; Carlos A. Guzmán; John Goodacre; Alexander von Gabain; Eszter Nagy; Andreas Meinke
ABSTRACT Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.
International Journal of Cancer | 2004
Margit Lachmann; Dieter Gelbmann; Endre Kálmán; Beata Polgar; Michael Buschle; Alexander von Gabain; Julia Szekeres-Bartho; Eszter Nagy
PIBF was previously identified as a 34 kDa immunomodulatory molecule secreted by pregnancy lymphocytes and is thought to play a crucial role in preventing rejection of the embryo by the maternal immune response. Recent data suggested that PIBF protein was also expressed by the progesterone receptor (PR) positive MCF‐7 breast tumor cell line. Therefore our study was designed to analyze the expression of PIBF in malignant cell lines and primary tumors both at the mRNA and protein levels. RNA expression analyses of several human cell lines with different tissue origin and paired human tumor/normal tissues, as well as of several PR+ and PR− breast tumors revealed that PIBF mRNA was overexpressed in highly proliferating cells independent of the presence of PR. In addition to the full‐length PIBF mRNA encoding for a 90 kDa protein, several alternatively spliced species were detected, all resulting from perfect exon skipping. The most frequently identified splice variant is predicted to encode for an approximately 35 kDa protein. Immunofluorescence microscopy revealed a centrosomal localization for the full‐length PIBF, while the 35 kDa form showed a diffuse cytoplasmic staining. These data, together with the identification of the PIBF gene in the chromosomal region associated with breast cancer susceptibility, reveal a strong parallel with known tumor suppressor proteins, such as BRCA1 and p53 having the same centrosomal localization. Given the notion that a number of proteins shown to be involved in tumorigenesis are associated with the centrosome and disturbed centrosome function causes unequal segregation of chromosomes, studies to evaluate whether or not PIBF that is highly expressed in tumors is directly involved in tumorigenesis are thus warranted.
Vaccine | 2010
Andreas Meinke; Beatrice Senn; Zehra Visram; Tamás Henics; Duc Bui Minh; Wolfgang Schüler; Christina Neubauer; Dieter Gelbmann; Birgit Noiges; Jan Sinzinger; Markus Hanner; Shailesh Dewasthaly; Urban Lundberg; Knut Hordnes; Helga Masoud; Paul Sevelda; Alexander von Gabain; Eszter Nagy
Group B streptococcus is one of the most important pathogens in neonates, and causes invasive infections in non-pregnant adults with underlying diseases. Applying a genomic approach that relies on human antibodies we identified antigenic GBS proteins, among them most of the previously published protective antigens. In vitro analyses allowed the selection of conserved candidate antigens that were further evaluated in murine lethal sepsis models using several GBS strains. In active and passive immunization models, we identified four protective GBS antigens, FbsA and BibA, as well as two hypothetical proteins, all shown to contribute to virulence based on gene deletion mutants. These protective antigens have the potential to be components of novel vaccines or targets for passive immune prophylaxis against GBS disease.
Vaccine | 2009
Andreas Meinke; Martin Storm; Tamás Henics; Dieter Gelbmann; Sonja Prustomersky; Zoltán Kovács; Duc Bui Minh; Birgit Noiges; Ulrike Stierschneider; Manfred Berger; Alexander von Gabain; Lars Engstrand; Eszter Nagy
Helicobacter pylori is the most prevalent human pathogen and although, it remains silent in most individuals for lifetime, colonization may develop into severe gastric and duodenal conditions. Rapidly developing resistance to antibiotic treatment urgently calls for the development of effective vaccines. We determined the ANTIGENome of two clinical isolates of H. pylori, KTH-Ca1 and KTH-Du, derived from patients with gastric cancer and duodenal ulcer, respectively. Using disease-relevant human sera from well-characterized donors we identified 124 annotated ORFs and 54 non-annotated peptides as antigens. Through in vitro validation assays we selected the 20 most promising vaccine candidates. Importantly, two candidates represent proteins that were previously shown to provide protection in models of H. pylori infection. One of the most frequently selected and conserved protein, the siderophore-dependent transporter HP1341, was confirmed to show high reactivity with human serum IgGs. These analyses provide the means to identify novel antigens for the selection of vaccine candidates, as well as disease associated biomarkers.
Vaccine | 2011
Beatrice Senn; Zehra Visram; Andreas Meinke; Christina Neubauer; Dieter Gelbmann; Jan Sinzinger; Markus Hanner; Urban Lundberg; Heike Boisvert; Dieter J. Reinscheid; Alexander von Gabain; Eszter Nagy
Group B streptococcus remains an important neonatal pathogen in spite of widely adopted intrapartum antibiotic administration; therefore immune prophylaxis for GBS infections is highly warranted. In passive immunization and lethal challenge studies with multiple GBS strains, we characterized the protective effect of rabbit polyclonal and murine monoclonal antibodies specific for four multi-functional cell wall anchored proteins, FbsA, BibA, PilA and PilB. Single specificity rabbit sera or mAbs induced high level, but strain dependent protection, while their combinations resulted in superior and broad efficacy against all GBS strains tested. Polyclonal and monoclonal antibodies specific for the pilus proteins exerted very potent opsonophagocytic killing activity in vitro and required the Fc domain for protection in vivo. In contrast, FbsA and BibA specific antibodies failed to show OPK activity, but their Fab fragments fully protected animals, suggesting that blocking the function of these proteins was the major mode of action. These data are supportive for developing immune prophylaxis with human mAbs for prematurely born neonates who receive low levels of antibodies by maternofetal transport and are characterized by not fully developed phagocytic and complement activity.
Microbiology | 2010
Carmen Giefing; Kira E. Jelencsics; Dieter Gelbmann; Beatrice Senn; Eszter Nagy
Archive | 2004
Andreas Meinke; Eszter Nagy; Birgit Winkler; Dieter Gelbmann