Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter H. Hartmann is active.

Publication


Featured researches published by Dieter H. Hartmann.


The Astrophysical Journal | 2003

How Massive Single Stars End Their Life

Alexander Heger; Christopher L. Fryer; S. E. Woosley; Norbert Langer; Dieter H. Hartmann

How massive stars die—what sort of explosion and remnant each produces—depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.


The Astrophysical Journal | 1990

The nu-process

S. E. Woosley; Dieter H. Hartmann; R. D. Hoffman; W. C. Haxton

As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: nu-nucleosynthesis. Modifications to traditional hydrostatic and explosive varieties of helium, carbon, neon, oxygen, and silicon burning are considered. The results show that a large number of rare isotopes, including many of the odd-Z nuclei from boron through copper, owe much of their present abundance in nature to this process. 112 refs.


The Astrophysical Journal | 1999

Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

Chris L. Fryer; S. E. Woosley; Dieter H. Hartmann

The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ~100 day-1; (2) neutron star-black hole mergers: ~450 day-1; (3) collapsars: ~104 day-1; (4) helium star black hole mergers: ~1000 day-1; and (5) white dwarf-black hole mergers: ~20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (fΩ < 1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host galaxy, one-half of the DNS mergers will happen within 60 kpc (for a galaxy with a mass comparable to that of the Milky Way) to 5 Mpc (for a galaxy with negligible mass) from the Galactic center. The same numbers characterize BH/NS mergers. Because of the delay time, neutron star and black hole mergers will happen at a redshift 0.5-0.8 times that of the other classes of models. Information is still lacking regarding the hosts of short, hard bursts, but we suggest that they are due to DNS and BH/NS mergers and thus will ultimately be determined to lie outside of galaxies and at a closer mean distance than long complex bursts (which we attribute to collapsars). In the absence of a galactic site, the distance to these bursts may be difficult to determine.


Astronomy and Astrophysics | 2004

Implications of Cosmological Gamma-Ray Absorption II. Modification of gamma-ray spectra

T. Kneiske; T. Bretz; K. Mannheim; Dieter H. Hartmann

Bearing on the model for the time-dependent metagalactic radiation field developed in the first paper of this series, we compute the gamma-ray attenuation due to pair production in photon-photon scattering. Emphasis is on the effects of varying the star formation rate and the fraction of UV radiation assumed to escape from the star forming regions, the latter being important mainly for high-redshift sources. Conversely, we investigate how the metagalactic radiation field can be measured from the gamma-ray pair creation cutoff as a function of redshift, the Fazio-Stecker relation. For three observed TeV-blazars (Mkn501, Mkn421, H1426+428) we study the effects of gamma-ray attenuation on their spectra in detail.


Astronomy and Astrophysics | 2004

The host of GRB 030323 at z=3.372: A very high column density DLA system with a low metallicity

Paul M. Vreeswijk; Sara L. Ellison; Cedric Ledoux; R. A. M. J. Wijers; Johan Peter Uldall Fynbo; P. Møller; Arne A. Henden; J. Hjorth; Gianluca Masi; E. Rol; B. L. Jensen; Nial R. Tanvir; Andrew J. Levan; J. M. Castro Cerón; J. Gorosabel; A. J. Castro-Tirado; Andrew S. Fruchter; C. Kouveliotou; I. Burud; James E. Rhoads; N. Masetti; E. Palazzi; E. Pian; H. Pedersen; L. Kaper; A. C. Gilmore; P. M. Kilmartin; J. Buckle; Marc S. Seigar; Dieter H. Hartmann

We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.


Scopus | 2004

The host of GRB 030323 at z = 3.372: A very high column density DLA system with a low metallicity

Paul M. Vreeswijk; Sara L. Ellison; C. Ledoux; R.A.M.J. Wijers; E. Rol; L. Kaper; Van Den Heuvel Epj; J. P. U. Fynbo; J. Hjorth; B. L. Jensen; H. Pedersen; P. Møller; Arne A. Henden; Gianluca Masi; Nial R. Tanvir; Andrew J. Levan; Castro Cerón Jm; J. Gorosabel; Andrew S. Fruchter; I. Burud; James E. Rhoads; Alberto J. Castro-Tirado; C. Kouveliotou; N. Masetti; E. Palazzi; E. Pian; A. C. Gilmore; P. M. Kilmartin; J. Buckle; Marc S. Seigar

We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.


The Astrophysical Journal | 2004

A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows

A. Zeh; Sylvio Klose; Dieter H. Hartmann

We systematically reanalyzed all gamma-ray burst (GRB) afterglow data published through the end of 2002 in an attempt to detect the predicted supernova light component and to gain statistical insight into its phenomenological properties. We fit the observed photometric light curves as the sum of an afterglow, an underlying host galaxy, and a supernova component. The latter is modeled using published multicolor light curves of SN 1998bw as a template. The total sample of afterglows with established redshifts contains 21 bursts (GRB 970228-GRB 021211). For nine of these GRBs a weak supernova excess (scaled to SN 1998bw) was found, which is what makes this one of the first samples of high-z core-collapse supernovae. Among this sample are all bursts with redshifts less than ~0.7. These results strongly support the notion that in fact all afterglows of long-duration GRBs contain light from an associated supernova. A statistics of the physical parameters of these GRB-supernovae shows that SN 1998bw was at the bright end of its class, while it was not special with respect to its light-curve shape. Finally, we have searched for a potential correlation of the supernova luminosities with the properties of the corresponding bursts and optical afterglows, but we have not found such a relation.


Astronomy and Astrophysics | 2006

Probing cosmic chemical evolution with gamma-ray bursts: GRB 060206 at z = 4.048

J. P. U. Fynbo; Rhaana L. C. Starling; Cedric Ledoux; Klaas Wiersema; C. C. Thöne; Jesper Sollerman; P. Jakobsson; J. Hjorth; D. Watson; Paul M. Vreeswijk; P. Møller; E. Rol; J. Gorosabel; Jyri Naranen; R. A. M. J. Wijers; G. Björnsson; J. M. Castro Cerón; P. A. Curran; Dieter H. Hartmann; Stephen T. Holland; B. L. Jensen; Andrew J. Levan; Marceau Limousin; C. Kouveliotou; G. Nelemans; Robert S. Priddey; Nial R. Tanvir

Aims.We present early optical spectroscopy of the afterglow of the gamma-ray burst GRB 060206 with the aim of determining the metallicity of the GRB absorber and the physical conditions in the circumburst medium. We also discuss how GRBs may be important complementary probes of cosmic chemical evolution. Methods.Absorption line study of the GRB afterglow spectrum. Results.We determine the redshift of the GRB to be z=4.04795±0.00020. Based on the measurement of the neutral hydrogen column density from the damped Lyman-alpha line and the metal content from weak, unsaturated S II lines we derive a metallicity of [S/H]=-0.84±0.10. This is one of the highest metallicities measured from absorption lines at z~4. From the very high column densities for the forbidden Si II*, O I*, and O I** lines we infer very high densities and low temperatures in the system. There is evidence for the presence of H2 molecules with log N(H_2)~17.0, translating into a molecular fraction of log{f}≈ -3.5 with f=2N(H2)/(2N(H2) + N(H I)). Even if GRBs are only formed by single massive stars with metallicities below ~0.3 Zo, they could still be fairly unbiased tracers of the bulk of the star formation at z>2. Hence, metallicities as derived for GRB 060206 here for a complete sample of GRB afterglows will directly show the distribution of metallicities for representative star-forming galaxies at these redshifts.


The Astrophysical Journal | 1985

Nucleosynthesis in neutron-rich supernova ejecta

Dieter H. Hartmann; S.E. Woosley; M. F. El Eid

The present study is concerned with nucleosynthesis in supernova ejecta which achieve nuclear statistical equilibrium (NSE) with a characteristic neutron excess far greater than that customarily assigned to the production of the most abundant heavy elements. A model-independent approach is adopted, and NSE distributions are calculated at a typical freeze-out temperature and density for a variety of neutron excesses. Attention is given to equilibrium abundances, freeze-out abundances, multiple zone mixing, the nucleus Ca-48, the nucleus Zn-66, a table with data regarding normalized NSE abundances, and mass fractions obtained from multizone mixing as a function of maximum neutron enrichment. 58 references.


The Astrophysical Journal | 1996

BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

M. S. Briggs; W. S. Paciesas; Geoffrey N. Pendleton; Charles A. Meegan; G. J. Fishman; John M. Horack; M. N. Brock; C. Kouveliotou; Dieter H. Hartmann; Jon Hakkila

We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxys rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

Collaboration


Dive into the Dieter H. Hartmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kouveliotou

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Hurley

University of California

View shared research outputs
Top Co-Authors

Avatar

Sylvio Klose

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adria C. Updike

Roger Williams University

View shared research outputs
Top Co-Authors

Avatar

Arne A. Henden

American Association of Variable Star Observers

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. J. Fishman

Marshall Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge