Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter Jendrossek is active.

Publication


Featured researches published by Dieter Jendrossek.


Applied Microbiology and Biotechnology | 1996

Biodegradation of polyhydroxyalkanoic acids.

Dieter Jendrossek; A. Schirmer; H. G. Schlegel

Abstract Stimulated by the commercial availability of bacteriologically produced polyesters such as poly[(R)-3-hydroxybutyric acid], and encouraged by the discovery of new constituents of polyhydroxyalkanoic acids (PHA), a considerable body of knowledge on the metabolism of PHA in microorganisms has accumulated. The objective of this essay is to give an overview on the biodegradation of PHA. The following topics are discussed: (i) general considerations of PHA degradation, (ii) methods for identification and isolation of PHA-degrading microorganisms, (iii) characterization of PHA-degrading microorganisms, (iv) biochemical properties of PHA depolymerases, (v) mechanisms of PHA hydrolysis, (vi) regulation of PHA depolymerase synthesis, (vii) molecular biology of PHA depolymerases, (viii) influence of the physicochemical properties of PHA on its biodegradability, (ix) degradation of polyesters related to PHA, (x) biotechnological aspects of PHA and PHA depolymerases.


Journal of Bacteriology | 2009

Polyhydroxyalkanoate Granules Are Complex Subcellular Organelles (Carbonosomes)

Dieter Jendrossek

Polyhydroxyalkanoates (PHAs) such as poly(3-hydroxybutyrate) (PHB) or poly(3-hydroxyoctanoate), are universal prokaryotic storage compounds of carbon and energy. PHAs are accumulated intracellularly in form of inclusion bodies (PHA granules) during times of oversupply with carbon sources (for


Journal of Environmental Polymer Degradation | 1993

Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase fromComamonas sp.

Dieter Jendrossek; Ingrid Knoke; Rahim Bahodjb Habibian; Alexander Steinbüchel; Hans G. Schlegel

Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.


Applied Microbiology and Biotechnology | 1995

Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1,3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33

Eun Yeol Lee; Dieter Jendrossek; A. Schirmer; Chunho Choi; Alexander Steinbüchel

Pseudomonas sp. A33 and other isolates of aerobic bacteria accumulated a complex copolyester containing 3-hydroxybutyric acid (3HB) and various medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from 3-hydroxybutyric acid or from 1,3-butanediol under nitrogen-limitated culture conditions. 3HB contributed to 15.1 mol/100 mol of the constituents of the polyester depending on the strain and on the cultivation conditions. The accumulated polymer was a copolyester of 3HB and 3HAMCL rather than a blend of poly(3HB) and poly(3HAMCL) on the basis of multiple evidence. 3-Hydroxyhexadecenoic acid and 3-hydroxyhexadecanoic acid were detected as constituents of polyhydroxyalkanoates, which have hitherto not been described, by13C nuclear magnetic resonance or by gas chromatography/mass spectrometric analysis. In total, ten different constituents were detected in the polymer synthesized from 1,3-butanediol by Pseudomonas sp. A33:besides seven saturated (3HB, 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydrohexadecanoate) three unsaturated (3-hydroxydodecenoate, 3-hydroxytetradecenoate and 3-hydrohexadecanoate) hydroxyalkanoic acid constituents occured. The polyhydroxyalkanoate synthase of Pseudomonas sp. A33 was cloned, and its substrate specificity was evaluated by heterologous expression in various strains of P. putida, P. oleovorans and Alcaligenes eutrophus.


Journal of Bacteriology | 2007

Isolated Poly(3-Hydroxybutyrate) (PHB) Granules Are Complex Bacterial Organelles Catalyzing Formation of PHB from Acetyl Coenzyme A (CoA) and Degradation of PHB to Acetyl-CoA

Keiichi Uchino; Terumi Saito; Birgit Gebauer; Dieter Jendrossek

Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from (14)C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) from PHB. Synthesis of 3HB-CoA was also shown by incubation of artificial (protein-free) PHB with CoA and PhaZa1, confirming that PhaZa1 is a PHB depolymerase catalyzing the thiolysis reaction. Acetyl-CoA was the major product detectable after incubation of nPHB granules in the presence of NAD(+), indicating that downstream mobilizing enzyme activities were also present and active in isolated nPHB granules. We propose that intracellular concentrations of key metabolites (CoA, acetyl-CoA, 3HB-CoA, NAD(+)/NADH) determine whether a cell accumulates or degrades PHB. Since the degradation product of PHB is 3HB-CoA, the cells do not waste energy by synthesis and degradation of PHB. Thus, our results explain the frequent finding of simultaneous synthesis and breakdown of PHB.


Journal of Bacteriology | 2004

Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin).

René Handrick; Simone Reinhardt; Daniel Schultheiss; Thomas Reichart; Dirk Schüler; Verena Jendrossek; Dieter Jendrossek

Efficient hydrolysis of native poly(3-hydroxybutyrate) (nPHB) granules in vitro by soluble PHB depolymerase of Rhodospirillum rubrum requires pretreatment of nPHB with an activator compound present in R. rubrum cells (J. M. Merrick and M. Doudoroff, J. Bacteriol. 88:60-71, 1964). Edman sequencing of the purified activator (17.4 kDa; matrix-assisted laser desorption ionization-time of flight mass spectrometry) revealed identity to a hypothetical protein deduced from a partially sequenced R. rubrum genome. The complete activator gene, apdA (activator of polymer degradation), was cloned from genomic DNA, expressed as a six-His-tagged protein in recombinant Escherichia coli (M(r), 18.3 x 10(3)), and purified. The effect of ApdA on PHB metabolism was studied in vitro and in vivo. In vitro, the activity of the activator could be replaced by trypsin, but recombinant ApdA itself had no protease activity. Comparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein patterns of trypsin- and ApdA-treated nPHB granules isolated from different PHB-accumulating bacteria showed that trypsin activated nPHB by removing proteins of the surface layer of nPHB regardless of the origin of nPHB, but ApdA bound to and interacted with the surface layer of nPHB in a nonproteolytic manner, thereby transforming nPHB into an activated form that was accessible to the depolymerase. In vivo, expression of ApdA in E. coli harboring the PHB biosynthetic genes, phaCBA, resulted in significant increases in the number and surface/volume ratio of accumulated PHB granules, which was comparable to the effect of phasin proteins, such as PhaP in Ralstonia eutropha. The amino acid sequence of ApdA was 55% identical to the amino acid sequence of Mms16, a magnetosome-associated protein in magnetotactic Magnetospirillum species. Mms16 was previously reported to be a GTPase with an essential function in magnetosome formation (Y. Okamura, H. Takeyama, and T. Matsunaga, J. Biol. Chem. 276:48183-48188, 2001). However, no GTPase activity of ApdA could be demonstrated. We obtained evidence that Mms16 of Magnetospirillum gryphiswaldense can functionally replace ApdA in R. rubrum. Fusions of apdA and mms16 to gfp or yfp were functionally expressed, and both fusions colocalized with PHB granules after conjugative transfer to R. rubrum. In conclusion, ApdA in vivo is a PHB-bound, phasin-like protein in R. rubrum. The function of Mms16 in magnetotactic bacteria requires further clarification.


Applied Microbiology and Biotechnology | 1993

Purification and properties of poly(3-hydroxyvaleric acid) depolymerase from Pseudomonas lemoignei

Beate Müller; Dieter Jendrossek

During growth on poly(3-hydroxyvaleric acid), P(3HV), or valerate Pseudomonas lemoignei secretes a P(3HV) depolymerase. This P(3HV) depolymerase was purified from the culture medium of valerate-grown cells by ammonium sulphate precipitation, chromatography on DEAe-sephacel and CM-Sepharose CL 6B. The relative molecular masses of the native as well as the sodium dodecyl sulphate (SDS)-treated enzyme were 53 000 or 54 000, respectively. In contrast to the poly(3-hydroxybutyric acid), P(3HB), depolymerase of Comamonas sp. and P(3HB) depolymerases A and B of P. lemoignei, which are specific for the hydrolysis of P(3HB), the purified P(3HV) depolymerase hydrolysed P(3HB), P(3HV) and co-polymers of 3-hydroxybutyric acid and 3-hydroxyvaleric acid at similar rates. Poly(hydroxyalkanoic acids), consisting of monomers with six and more carbon atoms or substrates characteristic for lipases such as Tween 80 or triolein were not hydrolysed. Maximum activities were measured in 50mm TRIS-HCl buffer, pH 8.0, at 55° C. The apparent Km values of the purified P(3HV) depolymerase for P(3HB) and P(3HV) were 77 and 65 μg polyester/ml, respectively. As the main product of enzymatic hydrolysis of P(3HV), 3-hydroxyvalerate was identified. The depolymerase was insensitive to p-hydroxymercuribenzoate but sensitive to dithioerythritol and phenylmethylsulphonyl fluoride, indicating the absence of active reduced sulphur groups and the presence of essential disulphide bonds and serine residues.


Polymer Degradation and Stability | 1998

Microbial degradation of polyesters: a review on extracellular poly(hydroxyalkanoic acid) depolymerases

Dieter Jendrossek

Abstract Thermoplastic polyesters such as biologically produced poly[( R )-3-hydroxy-butyric acid], other polyhydroxyalkanoic acids and related chemosynthetic polyesters, have properties which make them valuable for many applications. In addition, these materials can be biodegraded to water and carbon dioxide. Many aerobic and anaerobic polyester-degrading microorganisms have been found in all moderate ecosystems. The microorganisms decompose the polymers by secretion of extracellular polyester depolymerases and utilize low molecular weight degradation products. This review summarizes the present knowledge on microbial extracellular polyester depolymerases.


Applied Microbiology and Biotechnology | 1996

Scanning electron microscopy of polyhydroxyalkanoate degradation by bacteria

Hans-Peter Molitoris; S. T. Moss; G. J. M. de Koning; Dieter Jendrossek

Bacterial degradation of sheets of selected polyhydroxyalkanoates by Comamonas sp., Pseudomonas lemoignei and Pseudomonas fluorescens GK13 is reported. Five natural polyhydroxyalkanoates were used, namely poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate, a copolymer of mainly 3-hydroxyoctanoate and minor amounts of 3-hydroxyhexanoate, and two rubber-like copolymers of saturated and unsaturated hydroxyalkanoic acids that had been modified by electron-beam-induced cross-linking. Each of these polymers was degraded by at least one bacterial strain, the rate of hydrolysis being dependent on the surface area of the polymer exposed to attack. Scanning electron microscopy of partially degraded samples showed that hydrolysis started at the surface and at physical lesions in the polymer and proceeded to the inner part of the material. No evidence for areas of non-degradable polymer was found for any of the polymers analysed, even if the polymer contained chemical cross-links.


Journal of Environmental Polymer Degradation | 1994

Pseudomonas lemoignei has five poly(hydroxyalkanoic acid) (PHA) depolymerase genes: A comparative study of bacterial and eukaryotic PHA depolymerases

Bernd Holger Briese; Bernhard Schmidt; Dieter Jendrossek

Four polyhydroxyalkanoate (PHA) depolymerases were purified from the culture fluid ofPseudomonas lemoignei: poly(3-hydroxybutyrate) (PHB), depolymerase A (M r , 55,000), and PHB depolymerase B (M r , 67,000) were specific for PHB and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) as substrates. The third depolymerase additionally hydrolyzed poly(3-hydroxyvalerate) (PHV) at high rates (PHV depolymerase;M r , 54,000). The N-terminal amino acid sequences of the three purified proteins, of a fourth partially purified depolymerase (PHB depolymerase C), and of the PHB depolymerases ofComamonas sp. were determined. Four PHA depolymerase genes ofP. lemoignei (phaZ1,phaZ2,phaZ3, andphaZ4) have been cloned inEscherichia coli, and the nucleotide sequence ofphaZ1 has been determined recently (D. Jendrossek, B. Muller, and H. G. Schlegel,Eur. J. Biochem.218, 701–710, 1993). In this study the nucleotide sequences ofphaZ2 andphaZ3 were determined.PhaZ1,phaZ2, andphaZ4 were identified to encode PHB depolymerase C, PHB depolymerase B, and PHV depolymerase, respectively.PhaZ3 coded for a novel PHB depolymerase ofP. lemoignei, named PHB depolymerase D. None of the four genes harbored the PHB depolymerase A gene, which is predicted to be encoded by a fifth depolymerase gene ofP. lemoignei (phaZ5) and which has not been cloned yet. The deduced amino acid sequences ofphaZ1–phaZ3 revealed high homologies to each other (68–72%) and medium homologies to the PHB depolymerase gene ofAlcaligenes faecalis T1 (25–34%). Typical leader peptide amino acid sequences, lipase consensus sequences (Gly-Xaa-Ser-Xaa-Gly), and unusually high proportions of threonine near the C terminus were found in PhaZ1, PhaZ2, and PhaZ3. Considering the biochemical data of the purified proteins and the amino acid sequences, PHA depolymerases ofP. lemoignei are most probably serine hydrolases containing a catalytical triad of Asp, His, and Ser similar to that of lipases. A comparison of biochemical and genetic data of various eubacterial and one eukaryotic PHA depolymerases is provided also.

Collaboration


Dive into the Dieter Jendrossek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Demet Sirim

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakob Birke

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Breuer

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge