Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter Klaubert is active.

Publication


Featured researches published by Dieter Klaubert.


ACS Chemical Biology | 2008

HaloTag: a novel protein labeling technology for cell imaging and protein analysis.

Georgyi V. Los; Lance P. Encell; Mark McDougall; Danette Hartzell; Natasha Karassina; Chad Zimprich; Monika G. Wood; Randy Learish; Rachel Friedman Ohana; Marjeta Urh; Dan Simpson; Jacqui Mendez; Kris Zimmerman; Paul Otto; Gediminas Vidugiris; Ji Zhu; Aldis Darzins; Dieter Klaubert; Robert F. Bulleit; Keith V. Wood

We have designed a modular protein tagging system that allows different functionalities to be linked onto a single genetic fusion, either in solution, in living cells, or in chemically fixed cells. The protein tag (HaloTag) is a modified haloalkane dehalogenase designed to covalently bind to synthetic ligands (HaloTag ligands). The synthetic ligands comprise a chloroalkane linker attached to a variety of useful molecules, such as fluorescent dyes, affinity handles, or solid surfaces. Covalent bond formation between the protein tag and the chloroalkane linker is highly specific, occurs rapidly under physiological conditions, and is essentially irreversible. We demonstrate the utility of this system for cellular imaging and protein immobilization by analyzing multiple molecular processes associated with NF-kappaB-mediated cellular physiology, including imaging of subcellular protein translocation and capture of protein--protein and protein--DNA complexes.


ACS Chemical Biology | 2012

Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

Mary P. Hall; James Unch; Brock F. Binkowski; Michael P. Valley; Braeden L. Butler; Monika G. Wood; Paul Otto; Kristopher Zimmerman; Gediminas Vidugiris; Thomas Machleidt; Matthew B. Robers; Hélène A Benink; Christopher T. Eggers; Michael R. Slater; Poncho Meisenheimer; Dieter Klaubert; Frank Fan; Lance P. Encell; Keith V. Wood

Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes.


Journal of Biomolecular Screening | 2005

Homogeneous, Bioluminescent Protease Assays: Caspase-3 as a Model

Martha O'Brien; William J. Daily; P. Eric Hesselberth; Richard A Moravec; Michael Scurria; Dieter Klaubert; Robert F. Bulleit; Keith V. Wood

Using caspase-3 as a model, the authors have developed a strategy for highly sensitive, homogeneous protease assays suitable for high-throughput, automated applications. The assay uses peptide-conjugated aminoluciferin as the protease substrate and a firefly luciferase that has been molecularly evolved for increased stability. By combining the proluminescent caspase-3 substrate, Z-DEVD-aminoluciferin, with a stabilized luciferase in a homogeneous format, the authors developed an assay that is significantly faster and more sensitive than fluorescent caspase-3 assays. The assay has a single-step format, in which protease cleavage of the substrate and luciferase oxidation of the aminoluciferin occurs simultaneously. Because these processes are coupled, they rapidly achieve steady state to maintain stable luminescence for several hours. Maximum sensitivity is attained when this steady state occurs; consequently, this coupled-enzyme system results in a very rapid assay. The homogeneous format inherently removes trace contamination by free aminoluciferin, resulting in extremely low background and yielding exceptionally high signal-to-noise ratios and excellent Z′ factors. Another advantage of a luminescent format is that it avoids problems of cell autofluorescence or fluorescence interference that can be associated with synthetic chemical and natural product libraries. This bioluminescent, homogeneous format should be widely applicable to other protease assays.


Current Chemical Genomics | 2013

Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands.

Lance P. Encell; Rachel Friedman Ohana; Kris Zimmerman; Paul Otto; Gediminas Vidugiris; Monika G. Wood; Georgyi V. Los; Mark McDougall; Chad Zimprich; Natasha Karassina; Randall D. Learish; James Robert Hartnett; Sarah Wheeler; Pete Stecha; Jami English; Kate Zhao; Jacqui Mendez; Hélène A Benink; Nancy Murphy; Danette L. Daniels; Michael R. Slater; Marjeta Urh; Aldis Darzins; Dieter Klaubert; Robert F. Bulleit; Keith V. Wood

Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.


Biochemistry | 2012

Novel Heterocyclic Analogues of Firefly Luciferin

Carolyn C. Woodroofe; Poncho Meisenheimer; Dieter Klaubert; Yumi Kovic; Justin C. Rosenberg; Curran E. Behney; Tara L. Southworth; Bruce R. Branchini

Five novel firefly luciferin analogues in which the benzothiazole ring system of the natural substrate was replaced with benzimidazole, benzofuran, benzothiophene, benzoxazole, and indole were synthesized. The fluorescence, bioluminescence, and kinetic properties of the compounds were evaluated with recombinant Photinus pyralis wild type luciferase. With the exception of indole, all of the substrates containing heterocycle substitutions produced readily measurable flashes of light with luciferase. Compared to that of luciferin, the intensities ranged from 0.3 to 4.4% in reactions with varying pH optima and times to reach maximal intensity. The heteroatom changes influenced both the fluorescence and bioluminescence emission spectra, which displayed maxima of 479-528 and 518-574 nm, respectively. While there were some interesting trends in the spectroscopic and bioluminescence properties of this group of structurally similar substrate analogues, the most significant findings were associated with the benzothiophene-containing compound. This synthetic substrate produced slow decay glow kinetics that increased the total light-based specific activity of luciferase more than 4-fold versus the luciferin value. Moreover, over the pH range of 6.2-9.4, the emission maximum is 523 nm, an unusual 37 nm blue shift compared to that of the natural substrate. The extraordinary bioluminescence properties of the benzothiophene luciferin should translate into greater sensitivity for analyte detection in a wide variety of luciferase-based applications.


ACS Chemical Biology | 2011

Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells.

Kiwamu Takemoto; Tomoki Matsuda; Mark McDougall; Dieter Klaubert; Akira Hasegawa; Georgyi V. Los; Keith V. Wood; Atsushi Miyawaki; Takeharu Nagai

Chromophore-assisted light inactivation (CALI) is a potentially powerful tool for the acute disruption of a target protein inside living cells with high spatiotemporal resolution. This technology, however, has not been widely utilized, mainly because of the lack of an efficient chromophore as the photosensitizing agent for singlet oxygen ((1)O(2)) generation and the difficulty of covalently labeling the target protein with the chromophore. Here we choose eosin as the photosensitizing chromophore showing 11-fold more production of ((1)O(2)) than fluorescein and about 5-fold efficiency in CALI of β-galactosidase by using an eosin-labeled anti-β-galactosidase antibody compared with the fluorescein-labeled one. To covalently label target protein with eosin, we synthesize a membrane-permeable eosin ligand for HaloTag technology, demonstrating easy labeling and efficient inactivation of HaloTag-fused PKC-γ and aurora B in living cells. These antibody- and HaloTag-based CALI techniques using eosin promise effective biomolecule inactivation that is applicable to many cell biological assays in living cells.


ChemBioChem | 2008

Self-Cleavable Bioluminogenic Luciferin Phosphates as Alkaline Phosphatase Reporters

Wenhui Zhou; Christine Ann Andrews; Jianquan Liu; John Shultz; Michael P. Valley; Jim Cali; Erika Hawkins; Dieter Klaubert; Robert F. Bulleit; Keith V. Wood

Alkaline phosphatase (AP)—a stable enzyme with high specific activity for the hydrolysis of phosphate esters—is widely used as a conjugated enzyme label in enzyme-linked immunosorbent assays (ELISA) and DNA hybridization assays. It is also used as an in situ probe to monitor the expression and translocation of fusion proteins from the cytoplasm and for visualization of the spatial distribution of target biomolecules, such as cognate ligands or receptors in cells, tissues, and embryos. Among the many methods for detecting AP activity, there are various phosphate substrates, such as the colorimetric p-nitrophenyl phosphate, the fluorescent AttoPhos<, and the chemiluminescent adamantyl 1,2-diACHTUNGTRENNUNGoxetane AMPPD derivatives (Scheme 1). It is the ultrasensitivity of chemiluminescence, specifically with 1,2-dioxetane AMPPD derivatives, that has made this the overwhelming choice for monitoring AP activity. Although a luciferase-coupled bioluminescent assay is not only generically similar to the chemiluminescent assay and could show similar sensitivity, it also has the additional potential of creating recombinant luciferase to AP protein fusions, which might be preferable for the detection of AP activity in situ. The development of a suitable substrate to reach this ultrasensitivity is needed in order to promote the bioluminescent AP assay for practical applications. Chemical modification of the 6-hydroxyl group of luciferin (or the 6-amino group of aminoluciferin) is an effective means to approach bioluminescent assays for enzymes of interest, and 6-luciferin phosphate (Scheme 1) has been previously shown to detect AP activity. However, the detection limit of 10 19 mol of AP was 2–3 orders of magnitude lower than that for the AMPPD assay. Since the hydrolysis of phosphate monoesters is highly dependent on the pKa of the leaving group and the lower pKa 8.5 [11] of the luciferin phenol compared to a pKa ~9.0 of the adamantyl dioxetane phenol favors both nucleophilic attack and P O bond fission Scheme 1. Chemical structures of substrates for AP enzyme. A) Known chemiluminescent substrate AMPPD derivatives and bioluminescent substrate 6-luciferin phosphate; B) proposed self-cleavable luciferin phosphates, aminoluciferin trimethyl lock phosphate 1, and luciferin p-hydroxymethylphenyl phosphate 2.


BMC Cell Biology | 2008

Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter

Soshana Svendsen; Chad Zimprich; Mark McDougall; Dieter Klaubert; Georgyi V. Los

BackgroundThe ability to specifically label proteins within living cells can provide information about their dynamics and function. To study a membrane protein, we fused a multi-functional reporter protein, HaloTag®, to the extracellular domain of a truncated integrin.ResultsUsing the HaloTag technology, we could study the localization, trafficking and processing of an integrin-HaloTag fusion, which we showed had cellular dynamics consistent with native integrins. By labeling live cells with different fluorescent impermeable and permeable ligands, we showed spatial separation of plasma membrane and internal pools of the integrin-HaloTag fusion, and followed these protein pools over time to study bi-directional trafficking. In addition to combining the HaloTag reporter protein with different fluorophores, we also employed an affinity tag to achieve cell capture.ConclusionThe HaloTag technology was used successfully to study expression, trafficking, spatial separation and real-time translocation of an integrin-HaloTag fusion, thereby demonstrating that this technology can be a powerful tool to investigate membrane protein biology in live cells.


Analytical Chemistry | 2013

Mass Spectrometry Compatible Surfactant for Optimized In-Gel Protein Digestion

Sergei Saveliev; Carolyn C. Woodroofe; Grzegorz Sabat; Christopher M. Adams; Dieter Klaubert; Keith V. Wood; Marjeta Urh

Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.


Methods of Molecular Biology | 2008

Methods for Detection of Protein–Proteinnl and Protein–DNA Interactions Using HaloTag ™

Marjeta Urh; Danette Hartzell; Jacqui Mendez; Dieter Klaubert; Keith V. Wood

HaloTag is a protein fusion tag which was genetically engineered to covalently bind a series of specific synthetic ligands. All ligands carry two groups, the reactive group and the functional/reporter group. The reactive group, the choloroalkane, is the same in all the ligands and is involved in binding to the HaloTag. The functional reporter group is variable and can carry many different moieties including fluorescent dyes, affinity handles like biotin or solid surfaces such as agarose beads. Thus, HaloTag can serve either as a labeling tag or as a protein immobilization tag depending on which ligand is bound to it. Here, we describe a procedure for immobilization of HaloTag fusion proteins and how immobilized proteins can be used to study protein-protein and protein-DNA interactions in vivo and in vitro.

Collaboration


Dive into the Dieter Klaubert's collaboration.

Researchain Logo
Decentralizing Knowledge