Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter Lasser is active.

Publication


Featured researches published by Dieter Lasser.


Archive | 1992

Scattered Data Interpolation

Josef Hoschek; Dieter Lasser

Bei Anwendungen z.B. in der Geologie, Meteorologie, Kartographie, aber auch beim Digitalisieren von Modell Oberflachen, konnen unregelmasig verteilte Daten (scattered data) auftreten, die durch eine Flache interpoliert oder approximiert werden sollen.1) Das zu losende Interpolationsproblem lautet also: Gegeben sind N Abszissen xi = (xi,yi) ∈ ℝ2, i=1(1)N, mit zugehorigen Ordinaten (z.B. Meswerten) zi, gesucht ist eine Funktion f(x) = f (x,y) derart, das zi = (xi,yi) gilt. Das Approximationsproblem kann als (weighted oder auch als moving) least square Problem I(f) = Σ ωi (x) (f(xi, yi) - zi)2 → Min. behandelt werden, oder, was in jungster Zeit immer haufiger geschieht, als smoothing Problem I(f) = Σ ωi(x)(f(xi,yi) - zi)2 + λ J(f) → Min., mit Glattungsparameter λ und “physikalischem Term” J(f), z.B. der Biegeenergie einer eingespannten, elastischen dunnen Platte, etc. Wobei bei der scattered data Interpolation bzw. Approximation jedoch, im Gegensatz zur Aufgabenstellung der vorausgehenden Kapitel, keine speziellen Forderungen an die Datenpunkte (xi, yi, zi), insbesondere in Bezug auf Verteilungsanordnung und -dichte, gestellt werden. Wir wollen uns hier auf das Interpolationsproblem beschranken. Das Approximationsproblem wurde bereits in den Kap. 2.3, 4.4 und 6.2.5 angesprochen. Weiterhin sei auch verwiesen auf [Die 81], [Farw 86], [Fol 87b], [Fra 87], [Hay 74], [Hu 86], [Mcla 74, 76], [Mcm 87], [Lan 79], [LAN 86], [Schm 79, 83, 85], [Schu 76], sowie auf die Literaturliste [Fra 87a]; zum Smoothing s.a. Kap. 13.


Computer-aided Design | 1986

Intersection of parametric surfaces in the Bernstein—Be´zier representation

Dieter Lasser

Abstract A user-friendly ‘divide-and-conquer’ algorithm, which finishes quickly, is presented for finding all the intersection curves between two parametric surfaces in the Bernstein-Bezier representation. The underlying idea of the algorithm is to deal with the Bezier net instead of the surface description itself. By alternately subdividing the Bezier nets, and estimating the intersection area, a finite element mesh is created in the intersection region of the surfaces. The intersection is approximated by polygons computed by plane-plane-intersections using planes defined by Bezier points of the refined Bezier nets. Contour lines can also be produced by the algorithm.


Computer Aided Geometric Design | 1985

Bernstein-Bézier representation of volumes

Dieter Lasser

Two problems of the tensor product description of spatial domains by the method of Bernstein-Bezier are discussed: The construction of a volume point together with the first derivatives in this point and the solution of the interpolation problem. Some illustrative examples are given.


Computers in Industry | 1989

Calculating the self-intersections of Be´zier curves

Dieter Lasser

Abstract A user-friendly “divide-and-conquer” algorithm is presented for finding all the self-intersection points of a parametric curve in the Bernstein-Bezier representation. The underlying idea of the algorithm is to deal with the Bezier polygon instead of the curve description itself. By alternately subdividing the Bezier polygon and estimating the self-intersection regions the self-intersection points are finally approximated by straight line intersections of the refined Bezier polygons. The algorithm also calculates the parameter values of the self-intersection points. In addition to the convex hull and the approximation property of the Bezier polygon the working of the algorithm is based on a very intuitive angle criterion.


Computers & Mathematics With Applications | 2008

Triangular subpatches of rectangular Bézier surfaces

Dieter Lasser

A formula is presented for describing triangular subpatches of rectangular Bezier surfaces. Calculations using it are numerically stable, since they are based on de Casteljau recursions and convex combinations of combinatorial constants. Several examples of quadratic, cubic and quartic subpatches are given, and the bi- and the quadripartition of a rectangular Bezier surface are discussed.


Computer Aided Geometric Design | 2002

Tensor product Bézier surfaces on triangle Bézier surfaces

Dieter Lasser

An explicit formula as well as a geometric algorithm are given for converting a rectangular subpatch of a triangular Bezier surface into a tensor product Bezier representation. Based on de Casteljau recursions and convex combinations of combinatorial constants, both formula and algorithm are numerically stable. Examples and special problems are discussed such as the suitcase corner problem and surfaces of the same polynomial degree.


Computers & Mathematics With Applications | 1992

B-spline-Bézier representation of geometric spline curves : quartics and quintics

Matthias Eck; Dieter Lasser

Abstract We present a B-spline-Bezier representation of geometrically continuous quartic and quintic spline curves based on the Bezier representation of these curves described in a foregoing paper of the two authors. The influence of the design parameters is illustrated, and local support basis functions are given. Geometrically continuous curves include as special cases visually continuous curves as well as minimizing spline curves due to Nielson [1] and Hagen [2].


Archive | 1989

Bernstein-Bézier Representation of Solid Models

Dieter Lasser

The two most popular methods of representing solids are the Constructive Solid Geometry CSG and the Boundary Representation BR (see e.g. [Casale 85]). CSG represents a solid as a combination of solid primitives such as blocks, cones, and spheres through Boolean operators. BR represents a solid by the description of the bounding surface elements of the solid, the edges bordering adjacent surface elements and the vertices where such edges meet. Each of the two methods has advantages and shortcomings. Two disadvantages might be that the design, the free-form character of both methods is not very rich and that they assume internal homogeneity. But sometimes there is the need for a free-form modeling method and sometimes we are interested not only in the surface of a solid but also in his interior structure, and even if interior information is not desired the solid definition can serve as a useful tool in many geometric operations. Therefore there is a wide variety of volume, i.e. trivariate representation applications, e.g. the temperature, the pressure, the gravitational or the electromagnatic field, etc. as a function of the three spatial variables, the motion of a (changing) surface, e.g. the diffusion of the surface of a chemical reaction, the description of inhomogeneous material, surface generation by geometric operations or as contours of trivariate hypersurfaces [Sederberg 85, 86] and modification [Casale 85], [Farouki 85], [Sederberg 86], etc. (for details and more examples see the literature listed in the references).


Archive | 1989

Scattered Data Interpolation und Approximation

Josef Hoschek; Dieter Lasser

Bei Anwendungen z.B. in der Geologie, Meteorologie, Kartographie aber auch beim Digitalisieren von Modelloberflachen konnen unregelmasig verteilte Daten (scattered data) auftreten, die durch eine Flache interpoliert oder approximiert werden sollen. Das zu losende Interpolationsproblem lautet also: gegeben sind N+1 Abszissen xi = (xi, yi) ∈ ℝ2, i = 0(1) N, mit zugehorigen Ordinaten (z.B. Meswerten) zi, gesucht ist eine Funktion f(x) = f (x, y) derart, das zi = f(xi, yi) gilt. Das Approximations problerm kann als (weighted oder auch als moving) least square Problem I(f) = Σ ωi(x) (f(xi, yi) − zi)2 → Min. behandelt werden, oder, was in jungster Zeit immer haufiger geschieht, als smoothing Problem I(f) = Σ ωi(x) (f(xi, yi) − zi)2+ λ J(f) → Min., mit Glattungsparameter λ und “physikalischem Term” J(f), z.B. der Biegeenergie einer eingespannten, elastischen dunnen Platte, etc. Wobei bei der scattered data Interpolation bzw. Approximation jedoch, im Gegensatz zur Aufgabenstellung der vorausgehenden Kapitel, keine speziellen Forderungen an die Datenpunkte (xi, yi, zi), insbesondere in Bezug auf Verteilungsanordnung und -dichte, gestellt werden. Wir wollen uns hier auf das Interpolationsproblem beschranken. Das Approximationsproblem wurde bereits in den Kap. 2.4, 2.5 und 4.4 angesprochen. Weiterhin sei auch verwiesen auf [DIE 81], [FARW 86], [FOL 87c], [FRA 87], [HAY 74], [HU 86], [MCLA 74, 76], [MCM 87], [LAN 79, 86], [SCHM 79, 83, 85], [SCHU 76], sowie auf die Literaturliste [FRA 87a]; zum Smoothing s. a. Kap. 13.


Archive | 1992

Bézier- und B-Spline-Kurven

Josef Hoschek; Dieter Lasser

Wir konnten bei der Untersuchung der kubischen Splinekurven (Monome als Basisfunktionen) keine geometrische Deutung der Splinekoeffizienten herleiten. Es lassen sich aber andere polynomiale Basisfunktionen angeben, bei denen die Splinekoeffizienten b i geometrische Bedeutung haben, d.h. z.B., das die b i den ungefahren Verlauf der Kurve (oder Flache) festlegen oder das aus der Lage der Splinekoeffizienten b i auf geometrische Eigenschaften der Kurve (oder Flache) geschlossen werden kann. Solche Basisfunktionen haben in der Praxis fur das interaktive Arbeiten grose Bedeutung, da alle Prozesse geometrisierbar sind. Wir werden im wesentlichen zwei Typen solcher Splinefunktionen betrachten — die Bezier-Spline-Kurven, — die B-Spline-Kurven.

Collaboration


Dive into the Dieter Lasser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge