Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter Niederacher is active.

Publication


Featured researches published by Dieter Niederacher.


Clinical Cancer Research | 2006

The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer.

Magali Olivier; Anita Langerød; Patrizia Carrieri; Jonas Bergh; Sigrid Klaar; Jorunn E. Eyfjörd; Charles Theillet; Carmen Rodríguez; Rosette Lidereau; Ivan Bièche; Jennifer Varley; Yves-Jean Bignon; Nancy Uhrhammer; Robert Winqvist; Arja Jukkola-Vuorinen; Dieter Niederacher; Shunsuke Kato; Chikashi Ishioka; Pierre Hainaut; Anne Lise Børresen-Dale

To investigate the clinical value of somatic TP53 mutations in breast cancer, we assembled clinical and molecular data on 1,794 women with primary breast cancer with long-term follow-up and whose tumor has been screened for mutation in exons 5 to 8 of TP53 by gene sequencing. TP53 mutations were more frequent in tumors of ductal and medullar types, aggressive phenotype (high grade, large size, node positive cases, and low hormone receptor content) and in women <60 years old. TP53 mutations within exons 5 to 8 conferred an elevated risk of breast cancer-specific death of 2.27 (relative risk >10 years; P < 0.0001) compared with patients with no such mutation. The prognostic value of TP53 mutation was independent of tumor size, node status, and hormone receptor content, confirming and reconciling previous findings in smaller series. Moreover, an interaction between TP53 mutation and progesterone receptor (PR) status was revealed, TP53 mutation combined with the absence of progesterone receptor being associated with the worst prognosis. Whereas previous studies have emphasized the fact that missense mutations in the DNA-binding motifs have a worse prognosis than missense mutations outside these motifs, we show that non-missense mutations have prognostic value similar to missense mutations in DNA-binding motifs. Nonetheless, specific missense mutants (codon 179 and R248W) seem to be associated with an even worse prognosis. These results, obtained on the largest series analyzed thus far, show that TP53 mutations identified by gene sequencing have an independent prognostic value in breast cancer and could have potential uses in clinical practice.


Journal of Molecular Medicine | 1997

Multistep carcinogenesis of breast cancer and tumour heterogeneity.

Matthias W. Beckmann; Dieter Niederacher; Hans-Georg Schnürch; Barry A. Gusterson; Hans Georg Bender

Abstract Breast cancer emerges by a multistep process which can be broadly equated to transformation of normal cells via the steps of hyperplasia, premalignant change and in situ carcinoma. The elucidation of molecular interdependencies, which lead to development of primary breast cancer, its progression, and its formation of metastases is the main focus for new strategies targetted at prevention and treatment. Cytogenetic and molecular genetic analysis of breast cancer samples demonstrates that tumour development involves the accumulation of various genetic alterations including amplification of oncogenes and mutation or loss of tumour suppressor genes. Amplification of certain oncogenes with concomitant overexpression of the oncoprotein seems to be specific for certain histological types. Loss of normal tumour suppressor protein function can occur through sequential gene mutation events (somatic alteration) or through a single mutational event of a remaining normal copy, when a germline mutation is present. The second event is usually chromosome loss, mitotic recombination, or partial chromosome deletion. Chromosome loci 16q and 17p harbour tumour suppressor genes, which seem to be pathognomonic for the development or progression of a specific histological subtype. There are an overwhelming number of abnormalities that have been identified at the molecular level which fit the model of multistep carcinogenesis of breast cancer. When the functions of all of these genes are known and how they participate in malignant progression, we will have the tools for a more rational approach to diagnosis, prevention and treatment. This review deals only with the factors that are involved in the conversion of a normal breast cell into a malignant cell rather than those required for invasion and metastases. A key critical long-term step in the molecular analysis of breast cancer will be to link the specific molecular damage with the effects of environmental carcinogens.


American Journal of Human Genetics | 2008

Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

Antonis C. Antoniou; Amanda B. Spurdle; Olga M. Sinilnikova; Sue Healey; Karen A. Pooley; Rita K. Schmutzler; Beatrix Versmold; Christoph Engel; Alfons Meindl; Norbert Arnold; Wera Hofmann; Christian Sutter; Dieter Niederacher; Helmut Deissler; Trinidad Caldés; Kati Kämpjärvi; Heli Nevanlinna; Jacques Simard; Jonathan Beesley; Xiaoqing Chen; Susan L. Neuhausen; Timothy R. Rebbeck; Theresa Wagner; Henry T. Lynch; Claudine Isaacs; Jeffrey N. Weitzel; Patricia A. Ganz; Mary B. Daly; Gail E. Tomlinson; Olufunmilayo I. Olopade

Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.


Oncogene | 2006

Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis

J Veeck; Dieter Niederacher; H An; E Klopocki; F Wiesmann; B Betz; O Galm; O Camara; Matthias Dürst; Glen Kristiansen; C Huszka; R Knüchel; E Dahl

The canonical Wnt signalling pathway plays a key role during embryogenesis and defects in this pathway have been implicated in the pathogenesis of various types of tumours, including breast cancer. The gene for secreted frizzled-related protein 1 (SFRP1) encodes a soluble Wnt antagonist and is located in a chromosomal region (8p22–p12) that is often deleted in breast cancer. In colon, lung, bladder and ovarian cancer SFRP1 expression is frequently inactivated by promoter methylation. We have previously shown that loss of SFRP1 protein expression is a common event in breast tumours that is associated with poor overall survival in patients with early breast cancer. To investigate the cause of SFRP1 loss in breast cancer, we performed mutation, methylation and expression analysis in human primary breast tumours and breast cell lines. No SFRP1 gene mutations were detected. However, promoter methylation of SFRP1 was frequently observed in both primary breast cancer (61%, n=130) and cell lines analysed by methylation-specific polymerase chain reaction (MSP). We found a tight correlation (P<0.001) between methylation and loss of SFRP1 expression in primary breast cancer tissue. SFRP1 expression was restored after treatment of tumour cell lines with the demethylating agent 5-aza-2′-deoxycytidine. Most interestingly, SFRP1 promoter methylation was an independent factor for adverse patient survival in Kaplan–Meier analysis. Our results indicate that promoter hypermethylation is the predominant mechanism of SFRP1 gene silencing in human breast cancer and that SFRP1 gene inactivation in breast cancer is associated with unfavourable prognosis.


Journal of Neuropathology and Experimental Neurology | 1996

Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression.

J. Reifenberger; Ring Gu; Gies U; Cobbers L; Oberstrass J; Han-Xiang An; Dieter Niederacher; Wechsler W; Guido Reifenberger

Genomic alterations and expression of the p53 tumor suppressor gene and the epidermal growth factor receptor gene (EOFR) were investigated in 22 patients with primary World Health Organization (WHO) grade II gliomas that on recurrence had progressed to malignant gliomas of WHO grades III or IV. Mutations of the p53 gene (exons 5 to 8) were found in 12 of 22 primary tumors (10 of 13 astrocytomas, 1 of 7 oligodendrogliomas, 1 of 2 oligoastrocytomas). In each of these cases identical p53 mutations were present in the respective malignant recurrences. In all instances in which the p53 mutation was associated with p53 protein accumulation (10 of 12 cases) the percentage of p53 immunopositive tumor cells had increased from the primary to the recurrent tumor. None of the primary low-grade and none of the recurrent high-grade tumors (7 anaplastic astrocytomas, 10 anaplastic oligodendrogliomas, 4 anaplastic oligoastrocytomas, and 5 glioblastomas) showed evidence of EGFR gene amplification. Our results thus demonstrate that p53 is mutated in a high fraction of low-grade astrocytomas with progression to anaplastic astrocytomas and glioblastomas and that progression in such cases is frequently associated with an increase in the fraction of p53 immunopositive tumor cells. The general absence of EGFR amplification in our tumor series supports the hypothesis that the significance of p53 mutation and EGFR amplification may be different in glioblastomas that developed by progression from low-grade astrocytomas (secondary glioblastomas) compared to glioblastomas that developed rapidly in a de novo manner without a history of previous low-grade tumor (primary).


Human Mutation | 2010

Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases

Irene Catucci; Rongxi Yang; Paolo Verderio; Sara Pizzamiglio; Ludwig Heesen; Kari Hemminki; Christian Sutter; Barbara Wappenschmidt; Michelle Dick; Norbert Arnold; Peter Bugert; Dieter Niederacher; Alfons Meindl; Rita K. Schmutzler; Claus C. Bartram; Filomena Ficarazzi; Laura Tizzoni; Daniela Zaffaroni; Siranoush Manoukian; Monica Barile; Marco A. Pierotti; Paolo Radice; Barbara Burwinkel; Paolo Peterlongo

Recently, the SNPs rs11614913 in hsa‐mir‐196a2 and rs3746444 in hsa‐mir‐499 were reported to be associated with increased breast cancer risk, and the SNP rs2910164 in hsa‐mir‐146a was shown to have an effect on age of breast cancer diagnosis. In order to further investigate the effect of these SNPs, we genotyped a total of 1894 breast cancer cases negative for disease‐causing mutations or unclassified variants in BRCA1 and BRCA2, and 2760 controls from Germany and Italy. We compared the genotype and allele frequencies of rs2910164, rs11614913 and rs3746444 in cases versus controls of the German and Italian series, and of the two series combined; we also investigated the effect of the three SNPs on age at breast cancer diagnosis. None of the performed analyses showed statistically significant results. In conclusion, our data suggested lack of association between SNPs rs2910164, rs11614913 and rs3746444 and breast cancer risk, or age at breast cancer onset.


BMC Research Notes | 2010

Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells

Rui Neves; Christina Scheel; Sandra Weinhold; Ellen Honisch; Katharina M. Iwaniuk; Hans-Ingo Trompeter; Dieter Niederacher; Peter Wernet; Simeon Santourlidis; Markus Uhrberg

BackgroundThe miR-200c/141 cluster has recently been implicated in the epithelial to mesenchymal transition (EMT) process. The expression of these two miRNAs is inversely correlated with tumorigenicity and invasiveness in several human cancers. The role of these miRNAs in cancer progression is based in part on their capacity to target the EMT activators ZEB1 and ZEB2, two transcription factors, which in turn repress expression of E-cadherin. Little is known about the regulation of the mir200c/141 cluster, whose targeting has been proposed as a promising new therapy for the most aggressive tumors.FindingsWe show that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the promoter region of these miRNAs. Whereas in vitro methylation of the miR-200c/141 promoter led to shutdown of promoter activity, treatment with a demethylating agent caused transcriptional reactivation in breast cancer cells formerly lacking expression of miR-200c and miR-141. More importantly, we observed that DNA methylation of the identified miR-200c/141 promoter was tightly correlated with phenotype and the invasive capacity in a panel of 8 human breast cancer cell lines. In line with this, in vitro induction of EMT by ectopic expression of the EMT transcription factor Twist in human immortalized mammary epithelial cells (HMLE) was accompanied by increased DNA methylation and concomitant repression of the miR-200c/141 locus.ConclusionsThe present study demonstrates that expression of the miR-200c/141 cluster is regulated by DNA methylation, suggesting epigenetic regulation of this miRNA locus in aggressive breast cancer cell lines as well as untransformed mammary epithelial cells. This epigenetic silencing mechanism might represent a novel component of the regulatory circuit for the maintenance of EMT programs in cancer and normal cells.


British Journal of Cancer | 1996

Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer

Matthias W. Beckmann; Frauke Picard; Han-Xiang An; C. R. C. Van Roeyen; S. I. Dominik; D. S. Mosny; Hans-Georg Schnürch; Hans Georg Bender; Dieter Niederacher

The development of familial and sporadic breast cancer is based on genetic alterations of tumour-suppressor genes, for which loss of heterozygosity (LOH) is one mechanism of gene inactivation. To investigate LOH of BRCA1 (17q21) and BRCA2 (13-q12-13) in sporadic breast cancer, polymerase chain reaction (PCR)-based fluorescent DNA technology for detection of microsatellite polymorphisms was applied. A total of 137 breast cancer and 15 benign breast specimens with matched normal tissue were examined. Fluorescent-labelled PCR products were analysed in an automated DNA sequencer (ALFTM Pharmacia). Losses at both loci were correlated with different histological types, age, tumour size, lymph node status, grading and steroid hormone receptor expression, [SHR: oestrogen receptor (ER), progesterone receptor (PgR)]. For BRCA1 (D17S855, THRA1, D17S579) losses could be detected in invasive ductal carcinoma (IDC; n = 108) in 32-38%, invasive lobular carcinoma (ILC; n = 19) in 21-42% depending on the marker applied, but not in benign breast tumours (n = 15). Losses of BRCA1 markers correlated with larger tumour size, higher grade, and PgR expression. For BRCA2 (D13S260, D13S267, D13S171) losses could be detected in 108 IDCs in 30-38%, in 19 ILCs in 17-39% depending on the marker applied, but not in benign breast tumours. Losses of BRCA2 markers correlated only with higher grade. Microsatellite analyses combined with detection of fluorescent-labelled PCR products by an automated laser DNA sequencer can be used for routine determination of LOH. In sporadic breast cancer, LOH of BRCA1 of BRCA2 does not add decisive prognostic value as stated for familial breast cancer.


International Journal of Cancer | 2004

Limited relevance of the CHEK2 gene in hereditary breast cancer

Michael R. Dufault; Beate Betz; Barbara Wappenschmidt; Wera Hofmann; Katrin Bandick; Astrid Golla; Andrea Pietschmann; Caroline Nestle-Krämling; Kerstin Rhiem; Christine Hüttner; Celia von Lindern; Peter Dall; Marion Kiechle; Michael Untch; Walter Jonat; Alfons Meindl; Siegfried Scherneck; Dieter Niederacher; Rita K. Schmutzler; Norbert Arnold

To establish the importance of CHEK2 mutations for familial breast cancer incidence in the German population, we have screened all 14 of the coding exons in 516 families negative for mutations in both the BRCA1 and BRCA2 genes. We found 12 distinct variants in 30 unrelated patients (5.81%), including 5 that are novel and an additional 4 found for the first time in breast cancer. These aberrations were evaluated in 500 healthy women aged over 50 years and in the case of the 2 exon 10 mutations, 1100delC and 1214del4bp, in 1315 randomized healthy controls. According to our results, a statistically significant association for the exon 10 mutations was observed (p = 0.006). The prevalence of the 1100delC mutation in the German population, however, is significantly lower than those reported for other Caucasian populations both in familial breast cancer patients (1.6%) and controls (0.5%), and shows independent segregation with breast cancer in 2 of 4 families analyzed. The remaining 10 variants were more abundant in patients (21) compared to the controls (12) although the difference was not statistically significant. Interestingly, we found no increased breast cancer risk associated with the splice site mutation IVS2+1G→A or the most common missense mutation I157T, which account for more than half (12/21) of the variants observed in patients. The low prevalence and penetrance of the exon 10 deletion mutations together with no, or an uncertain elevation in risk for other CHEK2 mutations suggests a limited relevance for CHEK2 mutations in familial breast cancer. Further evaluation of the unique variants observed in breast cancer is required to determine if they may play a role in a polygenic model of familial breast cancer. Nevertheless, it seems premature to include CHEK2 screening in genetic testing.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients

Johannes C. Fischer; Dieter Niederacher; Stefan A. Topp; Ellen Honisch; Sarah Schumacher; Norma Schmitz; Luisa Zacarias Föhrding; Christian Vay; Imke Hoffmann; Nikola S. Kasprowicz; Philip Hepp; Svjetlana Mohrmann; U Nitz; Antje Stresemann; Thomas Krahn; Tanja Henze; Evelyn Griebsch; Katharina Raba; Jutta Rox; Folker Wenzel; Christoph Sproll; Wolfgang Janni; Tanja Fehm; Christoph A. Klein; Wolfram T. Knoefel; Nikolas H. Stoecklein

Significance The infrequent detection of circulating tumor cells (CTCs) has hindered their clinical implication and their potential use in the sense of a “liquid biopsy” for cancer diagnosis and therapy. Hypothesizing that the limited blood volume commonly used for CTC analysis (1–10 mL) accounts for variable detection rates, we used leukapheresis to screen large blood volumes for CTCs. This enabled a more reliable detection of CTCs at high frequency even in nonmetastatic cancer patients. Thus, diagnostic leukapheresis may facilitate the routine clinical use of CTCs as biomarkers for personalized medicine. Combined with technologies for single-cell molecular genetics or cell biology, it may significantly improve prediction of therapy response and monitoring, especially in early systemic cancer. Circulating tumor cells (CTCs) are promising biomarkers for diagnosis and therapy in systemic cancer. However, their infrequent and unreliable detection, especially in nonmetastatic cancer, currently impedes the clinical use of CTCs. Because leukapheresis (LA) targets peripheral blood mononuclear cells, which have a similar density to CTCs, and usually involves processing the whole circulating blood, we tested whether LA could substantially increase CTC detection in operable cancer patients. Therefore, we screened LA products generated from up to 25 L of blood per patient in two independent studies, and found that CTCs can be detected in more than 90% of nonmetastatic breast cancer patients. Interestingly, complete white blood cell sampling enabled determining an upper level for total CTC numbers of about 100,000 cells (median, 7,500 CTCs) per patient and identified a correlation of CTC numbers with anatomic disease spread. We further show that diagnostic leukapheresis can be easily combined with the US Food and Drug Administration-approved CellSearch system for standardized enumeration of CTCs. Direct comparison with 7.5 mL of blood revealed a significantly higher CTC frequency in matched LA samples. Finally, genomic single-cell profiling disclosed highly aberrant CTCs as therapy-escaping variants in breast cancer. In conclusion, LA is a clinically safe method that enabled a reliable detection of CTCs at high frequency even in nonmetastatic cancer patients, and might facilitate the routine clinical use of CTCs as in the sense of a liquid biopsy. Combined with technologies for single-cell molecular genetics or cell biology, it may significantly improve prediction of therapy response and monitoring of early systemic cancer.

Collaboration


Dive into the Dieter Niederacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Fehm

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Hans Neubauer

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias W. Beckmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge