Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dieter Piepenburg is active.

Publication


Featured researches published by Dieter Piepenburg.


Polar Biology | 1997

Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions?

Martin Graeve; Gerhard Kattner; Dieter Piepenburg

Arctic benthic organisms of various taxa (Anthozoa, Polychaeta, Pantopoda, Crustacea, Echinodermata) were collected on the shelves off northeast Greenland, Spitsbergen and the western Barents Sea. Their fatty acid compositions were generally characterised by the predominance of the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3) together with the saturated fatty acid 16:0, which reflect the dominance of phospholipids. The fatty acid compositions of most benthic specimens were influenced by fatty acids of dietary origin. High amounts of the fatty acid 16:1(n-7), typical of diatoms, were found in different taxa from the northeast Greenland shelf. The 18:4(n-3) fatty acid, often typical of non-diatom input, was only dominant in Ophiopholis aculeata from the Spitsbergen shelf. In some taxa small amounts of wax esters were detected with alcohol moieties similar to those of the dominant Arctic copepods. The occurrence of intact wax esters, as well as the wax ester typical fatty acids 20:1(n-9) and 22:1(n-11), also suggested ingestion of large herbivorous copepods. An unusual fatty acid composition was found for most brittle stars, due to a ratio of the 18:1(n-9) and (n-7) fatty acid isomers below 1 with lowest ratios of 0.1. A similar low ratio was also detected in the polychaete Onuphis conchylega. The extremely low portions of the 18:1(n-9) fatty acid are striking, since carnivores are generally characterised by high levels of this fatty acid. A clear gradient from low 18:1(n-9) to (n-7) ratios in suspension feeders, via predatory decapods, to higher ratios in the scavenging amphipods was a major characteristic of the benthic species. Our investigations showed that lipid analyses can give important hints on trophic relationships of benthic species and may serve as means to establish the intensity of pelagic-benthic coupling.


Polar Biology | 2005

Recent research on Arctic benthos: common notions need to be revised

Dieter Piepenburg

Increased public awareness of the global significance of polar regions and opening of the Russian Arctic to foreign researchers have led to a pronounced intensification of benthic research in Arctic seas. The wealth of information gathered in these efforts has markedly enhanced our knowledge on the Arctic benthos. While some scientific concepts have been corroborated by the novel findings (e.g., low endemism and high faunistic affinity to northern Atlantic assemblages), other common notions need to be revised, particularly with regard to the often-cited differences between Arctic seas and the Southern Ocean. It has been demonstrated that benthos assemblages vary broadly in diversity between Arctic regions and that, hence, the idea of a consistently poor Arctic benthos—being in stark contrast to the rich Antarctic bottom fauna—is an undue overgeneralization. In terms of biogeographic diversity, both Arctic and Antarctic waters seem to be characterized by intermediate species richness. Levels of disturbance—a major ecological agent known to heavily affect benthic diversity and community structure—have been assumed to be relatively high in the Arctic but exceptionally low in the Southern Ocean. The discovery of the great role of iceberg scouring in Antarctic shelf ecosystems, which has largely been overlooked in the past, calls for a reconsideration of this notion. The novel data clearly demonstrate that there are marked differences in geographical and environmental setting, impact of fluvial run-off, pelagic production regime, strength of pelago–benthic coupling and, hence, food supply to the benthos among the various Arctic seas, impeding the large-scale generalization of local and regional findings. Field evidence points to the great significance of meso-scale features in hydrography and ice cover (marginal ice zones, polynyas, and gyres) as ‘hot spots’ of tight pelago–benthic coupling and, hence, high benthic biomass. In contrast, the importance of terrigenic organic matter discharged to the Arctic seas through fluvial run-off as an additional food source for the benthos is still under debate. Studies on the partitioning of energy flow through benthic communities strongly suggest that megafauna has to be adequately considered in overall benthic energy budgets and models of carbon cycling, particularly in Arctic shelf systems dominated by abundant echinoderm populations. Much progress has been made in the scientific exploration of the deep ice-covered Arctic Ocean. There is now evidence that it is one order of magnitude more productive than previously thought. Therefore, the significance of shelf–basin interactions, i.e., the importance of excess organic carbon exported from productive shelves to the deep ocean, is still debated and, hence, a major topic of on-going research. Another high-priority theme of current/future projects are the ecological consequences of the rapid warming in the Arctic. Higher water temperatures, increased fluvial run-off and reduced ice cover will give rise to severe ecosystem changes, propagating through all trophic levels. It is hypothesized that there would be a shift in the relative importance of marine biota in the overall carbon and energy flux, ultimately resulting in a switch from a ‘sea-ice algae–benthos’ to a ‘phytoplankton–zooplankton’ dominance.


Journal of Marine Systems | 1997

Benthic community patterns reflect water column processes in the Northeast Water polynya (Greenland)

Dieter Piepenburg; William G. Ambrose; A. Brandt; Paul E. Renaud; Michael J. Ahrens; Preben Jensen

Abstract Benthic community patterns were investigated in the Northeast Water polynya (Greenland) during the summers of 1992 and 1993 to elucidate to what extent the bottom fauna is influenced by the dynamics of the overlying water. Five different fractions of the benthos (foraminiferans, nematodes, polychaetes, peracarid crustaceans, and epibenthic megafauna), ranging in average adult body size over 6 orders of magnitude (from about 100 μm to about 10 cm), were sampled quantitatively at 69 stations in water depths from 40 to 515 m. Total abundances of nematodes, polychaetes and peracarid crustaceans were found to be primarily correlated with parameters characterizing the potential benthic food supply (water column pigment and nitrate concentrations, sediment bound pigments and sediment biological activity), whereas abundances of foraminiferans and megabenthos were largely associated with seabed properties. Four benthic zones were distinguished by separately analyzing the faunistic composition and distribution of the five community fractions for Ob Bank, Western Westwind Trough, Eastern Westwind Trough, and Belgica Trough. This pattern was shown principally to reflect pelagic regimes differing in surface water hydrography, ice cover and euphotic productivity. This is the first time that a synoptic study of several benthic community portions spanning such a range in sizes and life styles has been performed in a polar shelf ecosystem. Our results indicate that abundances as well as composition of Arctic benthos are largely influenced by mesoscale pelagic processes, and thus provide further evidence for the importance of the benthic-pelagic coupling in high latitude seas.


Marine Biodiversity | 2011

Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas

Dieter Piepenburg; Philippe Archambault; William G. Ambrose; Arny L. Blanchard; Bodil A. Bluhm; Michael L. Carroll; Kathleen E. Conlan; Mathieu Cusson; Howard M. Feder; Jacqueline M. Grebmeier; Stephen C. Jewett; Mélanie Lévesque; Victor V. Petryashev; Mikael K. Sejr; Boris I. Sirenko; Maria Włodarska-Kowalczuk

Although knowledge of Arctic seas has increased tremendously in the past decade, benthic diversity was investigated at regional scales only, and no attempt had been made to examine it across the entire Arctic. We present a first pan-Arctic account of the species diversity of the macro- and megabenthic fauna of the Arctic marginal shelf seas. It is based on an analysis of 25 published and unpublished species-level data sets, together encompassing 14 of the 19 marine Arctic shelf ecoregions and comprising a total of 2,636 species, including 847 Arthropoda, 668 Annelida, 392 Mollusca, 228 Echinodermata, and 501 species of other phyla. For the four major phyla, we also analyze the differences in faunal composition and diversity among the ecoregions. Furthermore, we compute gross estimates of the expected species numbers of these phyla on a regional scale. Extrapolated to the entire fauna and study area, we arrive at the conservative estimate that 3,900–4,700 macro- and megabenthic species can be expected to occur on the Arctic shelves. These numbers are smaller than analogous estimates for the Antarctic shelf but the difference is on the order of about two and thus less pronounced than previously assumed. On a global scale, the Arctic shelves are characterized by intermediate macro- and megabenthic species numbers. Our preliminary pan-Arctic inventory provides an urgently needed assessment of current diversity patterns that can be used by future investigations for evaluating the effects of climate change and anthropogenic activities in the Arctic.


Polar Biology | 1997

Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) and off Northeast Greenland (Arctic): a comparison of diversity and abundance

Dieter Piepenburg; Jochen Voß; Julian Gutt

Abstract Composition and distribution of asteroid and ophiuroid assemblages were investigated by means of Agassiz trawl catches at 34 stations in 220- to 1,200-m depth in the Weddell Sea and at 17 stations in 90- and 830-m depth off Northeast Greenland. A total of 86 species (48 sea stars, 38 brittle stars) were identified in the Weddell Sea whereas off Northeast Greenland a total of 26 species (16 sea stars, 10 brittle stars) were recorded. In both study areas, brittle stars were numerically more important than sea stars, and abundances generally decreased with water depths. Multivariate analyses revealed a conspicuous depth zonation of sea and brittle stars off Greenland. Very high abundances of Ophiocten sericeum and Ophiura robusta characterized the assemblages on shallow shelf banks whereas in greater depths Ophiopleura borealis, Ophioscolex glacialis and Ophiacantha bidentata became dominant, albeit at significantly lower densities. Mass occurrences of brittle stars, such as those recorded on Greenlandic shelf banks, have not been discovered in the Weddell Sea, where distinct assemblages were discriminated in deep shelf trenches as well as on the eastern and southern shelf. Ophioplocus incipiens, Ophiurolepis martensi and Ophiurolepis brevirima were the most prominent species on the eastern shelf. Ophiacantha antarctica, Ophiurolepis gelida and Ophionotus victoriae on the southern shelf, and Ophiosparte gigas as well as the asteriod Hymenaster sp., in the shelf trenches. Overall, the Weddell Sea housed conspicuously more asterozoan species than the waters off Greenland. Higher species diversity was also evident at both a regional and local scale, especially for the eastern Weddell Sea shelf. However, because many species from the Weddell Sea are closely related, the Weddell Sea assemblages were not significantly different from the Greenland ones in terms of taxonomic diversity and distinctness.


Polar Biology | 1996

Brittle star fauna (Echinodermata: Ophiuroidea) of the arctic northwestern Barents sea: composition, abundance, biomass and spatial distribution

Dieter Piepenburg; Michael K. Schmid

Epibenthic brittle star assemblages were investigated on the northwestern Barents Sea shelf between 81° and 77°N in July 1991. At 9 drift stations in water depths between 80 and 360 m, series of 35–71 photographs, each depicting about 1 m2 of the seabed, were taken along transects of about 150- to 300-m length to assess abundances and spatial distribution patterns of adult brittle stars (disc diameter ≥1 mm). Biomass values were derived by combining abundances with size-weight relationships and size frequencies established using specimens from trawl catches. Six brittle star species were identified on the seabed images.Ophiocten sericeum was the most abundant species on shallow shelf banks (≤100 m). Up to 2,800 individuals were counted on a single photograph; median abundances per station ranged from 32 to 524 ind.m−2 and biomass from 0.3 to 5.0 g ash-free dry weight (AFDW) m−2. The spatial distribution along the transects (i.e. on the 100-m scale) was, however, extremely patchy. Disc diameters ofO. sericeum ranged between 1.6 mm and 15.4 mm. In deeper shelf habitats (>150 m),O. sericeum was rare or absent, andOphiacantha bidentata dominated the brittle star fauna with median densities and biomasses of 2–49 ind.m−2 and 0.07–1.9 g AFDW m−2, respectively. Its disc diameters ranged from 2.9 to 14.4 mm. The other species (Ophiura sarsi, Ophiopholis aculeata, Ophioscolex glacialis, Ophiopleura borealis) occurred in distinctly lower numbers. Our findings provide further evidence that brittle stars dominate epibenthic communities on Arctic shelves and locally reach very high abundances. Dense beds ofOphiocten sericeum seem to be a general phenomenon on high-Arctic shallow shelf banks.


Marine Biology | 1996

Distribution abundance, biomass, and mineralization potential of the epibenthic megafauna of the Northeast Greenland shelf

Dieter Piepenburg; Michael K. Schmid

The epibenthic megafauna of the high-Arctic Northeast Greenland shelf was investigated by means of seafloor photography and Agassiz trawl catches. At 54 stations in water depths between 40 and 770 m, sequences of color slides, each depicting about 1 m2 of the seafloor, were obtained along photographic transects of about 100 to 600 m length. The photographs were quantitatively analyzed for abundance of epibenthic organisms identified by comparison with specimens collected from trawl catches. Megabenthic biomass was estimated by multiplying density values with averge body mass figures. For five dominant brittle star species, the population oxygen uptake and, thus, organic carbon mineralization potential were approximated by applying individual respiration rates of average-sized specimens to density figures. Multivariate analyses of the megabenthic species distribution revealed a distinct depth zonation. Shallow shelf banks (<150 m), characterized by coarse sediments, many stones and boulders as well as negative bottom water temperatures, housed a rich epifauna (30 to 340 ind m−2, 1.8 to 10.5 g AFDW m−2), strongly dominated (80 to 98% by numbers) by the brittle stars Ophiocten sericeum and Ophiura robusta. The oxygen uptake by brittle stars ranged from 0.4 to 95 μmol O2 m−2 h−1 (i.e., assuming a respiratory quotient of 0.8, an organic carbon mineralization of 0.1 to 21.9 mg C m−2 d−1). At the bank flanks sloping to the shelf troughs (100 to 580 m), finer sediments prevailed, stones were rare, and bottom water temperatures were positive due to the inflow of Atlantic water. Compared to bank sites, total epibenthic abundances as well as carbon mineralization by brittle stars were roughly ten times and total biomass about four times smaller. In deep shelf depressions as well as at the continental slope (200 to 770 m), stones were completely lacking, and sediments very fine. Epibenthic standing stock and carbon mineralization were one to two orders of magnitude lower than on the banks. The estimation of brittle star oxygen uptake indicates that a considerable portion of the organic carbon produced in the polynya and partitioned to the benthos may be remineralized by epibenthic bank assemblages.


Polar Biology | 1996

Megabenthic communities in the waters around Svalbard

Dieter Piepenburg; N. V. Chernova; C. F. von Dorrien; Julian Gutt; A. V. Neyelov; Eike Rachor; Luiz Saldanha; Michael K. Schmid

Abstract Composition and distribution of megabenthic communities around Svalbard were investigated in June/July 1991 with 20 Agassiz trawl and 5 bottom trawl hauls in depths between 100 and 2100 m. About 370 species, ranging from sponges to fish, were identified in the catches. Species numbers per station ranged from 21 to 86. Brittle stars, such as Ophiacantha bidentata, Ophiura sarsi and Ophiocten sericeum, were most important in terms of constancy and relative abundance in the catches. Other prominent faunal elements were eunephthyid alcyonarians, bivalves, shrimps, sea stars and fish (Gadidae, Zoarcidae, Cottidae). Multivariate analyses of the species and environmental data sets showed that the spatial distribution of the megabenthos was characterized by a pronounced depth zonation: abyssal, bathyal, off-shore shelf and fjordic communities were discriminated. However, a gradient in sediment properties, especially the organic carbon content, seemed to superimpose on the bathymetric pattern. Both main factors are interpreted as proxies of the average food availability, which is, hence, suggested to have the strongest influence in structuring megabenthic communities off Svalbard.


Journal of Marine Systems | 1997

Sediment community biomass and respiration in the Northeast water polynya, Greenland: a numerical simulation of benthic lander and spade core data

Gilbert T. Rowe; Gregory S. Boland; Elva Escobar Briones; Marta Elizabeth Cruz-Kaegi; Adrian Newton; Dieter Piepenburg; Ian D. Walsh; Jody W. Deming

Sediment community metabolism (oxygen demand) was measured in the Northeast Water (NEW) polynya off Greenland employing two methods: in situ benthic chambers deployed with a benthic (GOMEX) lander and shipboard laboratory Batch Micro-Incubation Chambers (BMICs) utilizing ‘cores’ recovered from USNEL box cores. The mean benthic respiration rate measured with the lander was 0.057 mM O2 m−2 h−1 (n = 5); whereas the mean measured with the BMICs was 0.11 mM O2 m−2 h−1 (n = 21; p < 0.01 that the means were the same). In terms of carbon fluxes (14 and 27 mg C m−2 d−1), these respiration rates represent ca. 5–15% of the average net primary production measured in the euphotic zone in 1992. The biomass of the bacteria, meiofauna and macrofauna were measured at each location to quantify the relationship between total community respiration and total community biomass (mean 1.42 g C m−2). Average carbon residence time in the biota, calculated by dividing the biomass by the respiration, was on the order of 50–100 days, which is comparable to relatively oligotrophic continental margins at temperate latitudes. The biomass and respiration data for the aerobic heterotrophic bacteria, the infaunal invertebrates (meiofauna and macrofauna), and the epifaunal megabenthos (two species of brittle stars) are summarized in a ‘steady-state’ solution of a sediment food chain model, in terms of carbon. This carbon budget illustrates the relative importance of the sediment-dwelling invertebrates in the benthic subsystem, compared to the bacteria and the epibenthos, during the summer open-water period in mud-lined troughs at depths of about 300 m. The input needed to drive heterotrophic respiratory processes was within the range of the input of organic matter recorded in moored, time-sequencing sediment traps. A time-dependent numerical simulation of the model was run to investigate the potential responses of the three size groups of benthos to abrupt seasonal pulses of particulate organic matter. The model suggests that there is a time lag in the increase in bottom community biomass and respiration following the POC pulse, and provides hypothetical estimates for the potential carbon storage in the summer (open water), followed by catabolic losses during each ensuing winter (ice covered). This sequence of storage and respiration may contribute to the process of seasonal CO2 ‘rectification’ (sensu Yager et al., 1995) in some Arctic ecosystems.


EPIC3In: Stein, R., Macdonald, R.W. (eds) The Arctic Organic Carbon Cycle, Springer Verlag, Heidelberg:, pp. 139-167 | 2004

The Benthos of Arctic Seas and its Role for the Organic Carbon Cycle at the Seafloor

Michael Klages; Antje Boetius; J. P. Christensen; H. Deubel; Dieter Piepenburg; Ingo Schewe; Thomas Soltwedel

The exploration of the Arctic Ocean has a long and multi-national history, but still we are only beginning to understand the role of the Arctic Ocean in the global carbon cycle. This chapter addresses the contribution of the Arctic benthos to organic carbon utilization, modification and sequestration. We review findings in benthic ecology and biogeochemistry of the Arctic Ocean from the past 15 years. Several older reviews on the Arctic benthos are available with a different focus: Zenkevitch’s (1963) thorough volume covering the entire Eurasian Arctic benthos remains outstanding in its description of species composition, biomass and biogeographic aspects. Reviews by Curtis (1975), Dayton (1990), and Carey (1991) cover general aspects of the Arctic benthos as well as distribution patterns, productivity, and the feeding ecology of different species. Many recent studies have emphasized processes at the sediment-water boundary layer including respiration of sedimentinhabiting communities or single species (Piepenburg et al. 1995), calculation of carbon utilization and remineralization rates of benthic communities and their correlation to primary production (Boetius and Damm 1998), but also measuring biomass of benthic populations (Seiler 1999; Jorgensen et al. 1999; Deubel 2000). Recent discoveries of cold seeps north of the polar circle (Vogt et al. 1999) and of hydrothermal activity on the Gakkel Ridge (Thiede 2002) suggest a more diverse deep-sea benthos than previously known, but these on-going investigations cannot be reviewed herein.

Collaboration


Dive into the Dieter Piepenburg's collaboration.

Top Co-Authors

Avatar

Julian Gutt

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. v. Juterzenka

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Philippe Archambault

Université du Québec à Rimouski

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Brey

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eike Rachor

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge