Dietlinde Stienen
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dietlinde Stienen.
Journal of Medical Genetics | 2007
Stefan Aretz; Dietlinde Stienen; Siegfreid Uhlhaas; Manfred Stolte; Mark M Entius; Steffan Loff; Walter Back; Astrid Kaufmann; Klaus-Michael Keller; Stefan H Blaas; Reiner Siebert; Stefanie Vogt; Stefanie Spranger; Elke Holinski-Feder; Lone Sunde; Peter Propping; Waltraut Friedl
Background: In patients with juvenile polyposis syndrome (JPS) the frequency of large genomic deletions in the SMAD4 and BMPR1A genes was unknown. Methods: Mutation and phenotype analysis was used in 80 unrelated patients of whom 65 met the clinical criteria for JPS (typical JPS) and 15 were suspected to have JPS. Results: By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis of the PTEN gene in the remaining 41 mutation negative cases uncovered a point mutation in two patients (5%). SMAD4 mutation carriers had a significantly higher frequency of gastric polyposis (73%) than did patients with BMPR1A mutations (8%) (p<0.001); all seven cases of gastric cancer occurred in families with SMAD4 mutations. SMAD4 mutation carriers with gastric polyps were significantly older at gastroscopy than those without (p<0.001). In 22% of the 23 unrelated SMAD4 mutation carriers, hereditary hemorrhagic telangiectasia (HHT) was also diagnosed clinically. The documented histologic findings encompassed a wide distribution of different polyp types, comparable with that described in hereditary mixed polyposis syndromes (HMPS). Conclusions: Screening for large deletions raised the mutation detection rate to 60% in the 65 patients with typical JPS. A strong genotype-phenotype correlation for gastric polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted.
Journal of Medical Genetics | 2005
Stefan Aretz; Dietlinde Stienen; S Uhlhaas; Constanze Pagenstecher; Elisabeth Mangold; R Caspari; Peter Propping; Waltraut Friedl
56 which encodes a protein composed of 2843 amino acids and is formed by 14 small exons, and a large exon 15 that extends over three quarters of the coding sequence. To date, more than 500 different APC germline mutations have been reported in FAP patients (see Human Gene Mutation Database and references therein). Most of the germline mutations reported so far are localised in the 59 half of the gene and lead to premature truncation due to single base substitutions or small insertions/deletions, resulting in nonsense or frameshift mutations and rarely in splice site mutations. In a small number of cases, single base substitu- tions within exonic sequences predicted to result in missense or silent variants lead to aberrant splicing. 78 Most APC
International Journal of Cancer | 2015
Isabel Spier; Stefanie Holzapfel; Janine Altmüller; Bixiao Zhao; Sukanya Horpaopan; Stefanie Vogt; Sophia Y. Chen; Monika Morak; Susanne Raeder; Katrin Kayser; Dietlinde Stienen; Ronja Adam; Peter Nürnberg; Guido Plotz; Elke Holinski-Feder; Richard P. Lifton; Holger Thiele; Per Hoffmann; Verena Steinke; Stefan Aretz
In a number of families with colorectal adenomatous polyposis or suspected Lynch syndrome/HNPCC, no germline alteration in the APC, MUTYH, or mismatch repair (MMR) genes are found. Missense mutations in the polymerase genes POLE and POLD1 have recently been identified as rare cause of multiple colorectal adenomas and carcinomas, a condition termed polymerase proofreading‐associated polyposis (PPAP). The aim of the present study was to evaluate the clinical relevance and phenotypic spectrum of polymerase germline mutations. Therefore, targeted sequencing of the polymerase genes POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3 and POLE4 was performed in 266 unrelated patients with polyposis or fulfilled Amsterdam criteria. The POLE mutation c.1270C>G;p.Leu424Val was detected in four unrelated patients. The mutation was present in 1.5% (4/266) of all patients, 4% (3/77) of all familial cases and 7% (2/30) of familial polyposis cases. The colorectal phenotype in 14 affected individuals ranged from typical adenomatous polyposis to a HNPCC phenotype, with high intrafamilial variability. Multiple colorectal carcinomas and duodenal adenomas were common, and one case of duodenal carcinoma was reported. Additionally, various extraintestinal lesions were evident. Nine further putative pathogenic variants were identified. The most promising was c.1306C>T;p.Pro436Ser in POLE. In conclusion, a PPAP was identified in a substantial number of polyposis and familial colorectal cancer patients. Screening for polymerase proofreading mutations should therefore be considered, particularly in unexplained familial cases. The present study broadens the phenotypic spectrum of PPAP to duodenal adenomas and carcinomas, and identified novel, potentially pathogenic variants in four polymerase genes.
Human Mutation | 2012
Isabel Spier; Sukanya Horpaopan; Stefanie Vogt; Siegfried Uhlhaas; Monika Morak; Dietlinde Stienen; Markus Draaken; Michael Ludwig; Elke Holinski-Feder; Markus M. Nöthen; Per Hoffmann; Stefan Aretz
To uncover pathogenic deep intronic variants in patients with colorectal adenomatous polyposis, in whom no germline mutation in the APC or MUTYH genes can be identified by routine diagnostics, we performed a systematic APC messenger RNA analysis in 125 unrelated mutation‐negative cases. Overall, we identified aberrant transcripts in 8% of the patients (familial cases 30%; early‐onset manifestation 21%). In eight of them, two different out‐of‐frame pseudoexons were found consisting of a 167‐bp insertion from intron 4 in five families with a shared founder haplotype and a 83‐bp insertion from intron 10 in three patients. The pseudoexon formation was caused by three different heterozygous germline mutations, which are supposed to activate cryptic splice sites. In conclusion, a few deep intronic mutations contribute substantially to the APC mutation spectrum. Complementary DNA analysis and/or target sequencing of intronic regions should be considered as an additional mutation discovery approach in polyposis patients. Hum Mutat 33:1045–1050, 2012.
European Journal of Medical Genetics | 2010
Markus Draaken; Heiko Reutter; Charlotte Schramm; Enrika Bartels; Thomas M. Boemers; Anne-Karoline Ebert; Wolfgang H. Rösch; Annette Schröder; Raimund Stein; Susanne Moebus; Dietlinde Stienen; Per Hoffmann; Markus M. Nöthen; Michael Ludwig
The exstrophy-epispadias complex (EEC) comprises a spectrum of urogenital anomalies in which part or all of the distal urinary tract fails to close. The present study aimed to identify microaberrations characterized by loss or gain of genomic material that contribute to the EEC at a genome-wide level. Molecular karyotyping, utilizing 549,839 single nucleotide polymorphisms (SNPs) with an average spacing of 5.7 kilobases, was performed to screen an initial cohort of 16 patients with non-syndromic EEC. A de novo microduplication involving chromosomal region 22q11.21 was identified in one patient with classic exstrophy of the bladder (CBE). Subsequent multiplex ligation-dependent probe amplification (MLPA) analysis was performed with an MLPA 22q11 kit in a further 50 non-syndromic EEC cases. We identified one CBE patient with an overlapping 22q11.21 duplication in whom the duplication had been transmitted from the unaffected mother. Chromosomal region 22q11 is well known for its susceptibility to genomic rearrangements, and these are associated with various syndromes including the velo-cardio-facial/DiGeorge syndrome (VCFS/DGS), the der(22) syndrome, and the cat-eye syndrome. Duplications in this region result in a wide and variable spectrum of clinical presentations that include features of the VCFS/DGS, while some carriers present with a completely normal phenotype. Our findings extend the phenotypic spectrum of the 22q11.2 duplication syndrome, and indicate that this aberration predisposes to CBE with incomplete penetrance.
International Journal of Cancer | 2015
Sukanya Horpaopan; Isabel Spier; Alexander M. Zink; Janine Altmüller; Stefanie Holzapfel; Andreas Laner; Stefanie Vogt; Siegfried Uhlhaas; Stefanie Heilmann; Dietlinde Stienen; Sandra M. Pasternack; Kathleen Keppler; Ronja Adam; Katrin Kayser; Susanne Moebus; Markus Draaken; Franziska Degenhardt; Hartmut Engels; Andrea Hofmann; Markus M. Nöthen; Verena Steinke; Alberto Perez-Bouza; Stefan Herms; Elke Holinski-Feder; Holger Fröhlich; Holger Thiele; Per Hoffmann; Stefan Aretz
To uncover novel causative genes in patients with unexplained adenomatous polyposis, a model disease for colorectal cancer, we performed a genome‐wide analysis of germline copy number variants (CNV) in a large, well characterized APC and MUTYH mutation negative patient cohort followed by a targeted next generation sequencing (NGS) approach. Genomic DNA from 221 unrelated German patients was genotyped on high‐resolution SNP arrays. Putative CNVs were filtered according to stringent criteria, compared with those of 531 population‐based German controls, and validated by qPCR. Candidate genes were prioritized using in silico, expression, and segregation analyses, data mining and enrichment analyses of genes and pathways. In 27% of the 221 unrelated patients, a total of 77 protein coding genes displayed rare, nonrecurrent, germline CNVs. The set included 26 candidates with molecular and cellular functions related to tumorigenesis. Targeted high‐throughput sequencing found truncating point mutations in 12% (10/77) of the prioritized genes. No clear evidence was found for autosomal recessive subtypes. Six patients had potentially causative mutations in more than one of the 26 genes. Combined with data from recent studies of early‐onset colorectal and breast cancer, recurrent potential loss‐of‐function alterations were detected in CNTN6, FOCAD (KIAA1797), HSPH1, KIF26B, MCM3AP, YBEY and in three genes from the ARHGAP family. In the canonical Wnt pathway oncogene CTNNB1 (β‐catenin), two potential gain‐of‐function mutations were found. In conclusion, the present study identified a group of rarely affected genes which are likely to predispose to colorectal adenoma formation and confirmed previously published candidates for tumor predisposition as etiologically relevant.
The Journal of Molecular Diagnostics | 2009
Astrid Kaufmann; Stefanie Vogt; Siegfried Uhlhaas; Dietlinde Stienen; Ingo Kurth; Horst Hameister; Elisabeth Mangold; Judith Kötting; Elke Kaminsky; Peter Propping; Waltraut Friedl; Stefan Aretz
In monogenic disorders, the functional evaluation of rare, unclassified variants helps to assess their pathogenic relevance and can improve differential diagnosis and predictive testing. We characterized six rare APC variants in patients with familial adenomatous polyposis at the mRNA level. APC variants c.531 + 5G>C and c.532-8G>A in intron 4, c.1409-2_1409delAGG in intron 10, c.1548G>A in exon 11, and a large duplication of exons 10 and 11 result in a premature stop codon attributable to aberrant transcripts whereas the variant c.1742A>G leads to the in-frame deletion of exon 13 and results in the removal of a functional motif. Mutation c.1548G>A was detected in the index patient but not in his affected father, suggesting mutational mosaicism. A literature review shows that most of the rare APC variants detected by routine diagnostics and further analyzed at the transcript level were evaluated as pathogenic. The majority of rare APC variants, particularly those located close to exon-intron boundaries, could be classified as pathogenic because of aberrant splicing. Our study shows that the characterization of rare variants at the mRNA level is crucial for the evaluation of pathogenicity and underlying mutational mechanisms, and could lead to better treatment modalities.
European Journal of Human Genetics | 2014
Stefan Aretz; Rossella Tricarico; Laura Papi; Isabel Spier; Elisa Pin; Sukanya Horpaopan; Emanuela Lucci Cordisco; Monica Pedroni; Dietlinde Stienen; Annamaria Gentile; Anna Panza; Ada Piepoli; Maurizio Ponz de Leon; Waltraut Friedl; Alessandra Viel; Maurizio Genuardi
MUTYH-associated polyposis (MAP) is an autosomal recessive adenomatous polyposis caused by biallelic germline mutations of the base-excision-repair gene MUTYH. In MAP patients of European origin, the combined allele frequency of the mutations p.Tyr179Cys and p.Gly396Asp ranges between 50 and 82%, while these mutations have not been identified in Far Eastern Asian populations, supporting the hypothesis that a founder effect has occurred at some point in European history. To investigate the natural history of the two common European MUTYH alleles, we genotyped six gene-flanking microsatellite markers in 80 unrelated Italian and German MAP patients segregating one or both mutations and calculated their age in generations (g) by using DMLE+2.2 software. Three distinct common haplotypes, one for p.Tyr179Cys and two for p.Gly396Asp, were identified. Estimated mutation ages were 305 g (95% CS: 271–418) for p.Tyr179Cys and 350 g (95% CS: 313–435) for p.Gly396Asp. These results provide evidence for strong founder effects and suggest that the p.Tyr179Cys and p.Gly396Asp mutations derive from ancestors who lived between 5–8 thousand years and 6–9 thousand years B.C., respectively.
Journal of Neurodevelopmental Disorders | 2016
Madita Schumann; Andrea Hofmann; Sophia K. Krutzke; Alina C. Hilger; Florian Marsch; Dietlinde Stienen; U. Gembruch; Michael Ludwig; Waltraut M. Merz; Heiko Reutter
BackgroundThe overall birth prevalence for congenital malformations of the central nervous system (CNS) among Europeans may be as high as 1 in 100 live births. The etiological factors remain largely unknown. The aim of this study was to detect causative copy number variations (CNVs) in fetuses of terminated pregnancies with prenatally detected isolated brain malformations.MethodsArray-based molecular karyotyping was performed in a cohort of 35 terminated fetuses with isolated CNS malformations. Identified putative disease-causing CNVs were confirmed using quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification.ResultsBased on their de novo occurrence and/or their established association with congenital brain malformations, we detected five disease-causing CNVs in four fetuses involving chromosomal regions 6p25.1-6p25.3 (FOXC1), 6q27, 16p12.3, Xp22.2-Xp22.32 (MID1), and Xp22.32-Xp22.33. Furthermore, we detected a probably disease-causing CNV involving chromosomal region 3p26.3 in one fetus, and in addition, we detected 12 CNVs in nine fetuses of unknown clinical significance. All CNVs except for two were absent in 1307 healthy in-house controls (frequency <0.0008). Each of the two CNVs present in in-house controls was present only once (frequency = 0.0008). Furthermore, our data suggests the involvement of CNTN6 and KLHL15 in the etiology of agenesis of the corpus callosum, the involvement of RASD1 and PTPRD in Dandy-Walker malformation, and the involvement of ERMARD in ventriculomegaly.ConclusionsOur study suggests that CNVs play an important role in the etiology of isolated brain malformations.
Clinical and Experimental Dermatology | 2015
Silke Redler; Sandra M. Pasternack; Sabrina Wolf; Dietlinde Stienen; Jörg Wenzel; Markus M. Nöthen; Regina C. Betz
Monilethrix is a rare monogenic dystrophic hair loss disorder with high levels of intrafamilial and interfamilial variability. It is characterized by diffuse occipital or temporal alopecia, hair fragility and follicular hyperkeratosis of the occipital region. Mutations in the keratin genes KRT81, KRT83 and KRT86 lead to autosomal dominant monilethrix, whereas mutations in the desmoglein 4 gene (DSG4) cause an autosomal recessive form.