Dietmar A. Seiffert
Wilmington University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dietmar A. Seiffert.
Journal of Biological Chemistry | 2000
Dietmar A. Seiffert; Jodi D. Bradley; Cynthia M. Rominger; David H. Rominger; Fude Yang; Jere E. Meredith; Qian Wang; Arthur H. Roach; Lorin A. Thompson; Susan M. Spitz; Jeffrey N. Higaki; Shimoga R. Prakash; Andrew P. Combs; Robert A. Copeland; Stephen P. Arneric; Paul R. Hartig; David W. Robertson; Barbara Cordell; Andrew M. Stern; Richard E. Olson; Robert Zaczek
Presenilins are integral membrane protein involved in the production of amyloid β-protein. Mutations of the presenilin-1 and -2 gene are associated with familial Alzheimers disease and are thought to alter γ-secretase cleavage of the β-amyloid precursor protein, leading to increased production of longer and more amyloidogenic forms of Aβ, the 4-kDa β-peptide. Here, we show that radiolabeled γ-secretase inhibitors bind to mammalian cell membranes, and a benzophenone analog specifically photocross-links three major membrane polypeptides. A positive correlation is observed among these compounds for inhibition of cellular Aβ formation, inhibition of membrane binding and cross-linking. Immunological techniques establish N- and C-terminal fragments of presenilin-1 as specifically cross-linked polypeptides. Furthermore, binding of γ-secretase inhibitors to embryonic membranes derived from presenilin-1 knockout embryos is reduced in a gene dose-dependent manner. In addition, C-terminal fragments of presenilin-2 are specifically cross-linked. Taken together, these results indicate that potent and selective γ-secretase inhibitors block Aβ formation by binding to presenilin-1 and -2.
Journal of Cerebral Blood Flow and Metabolism | 2001
Masafumi Tagaya; Hans-Peter Haring; Ingrid Stuiver; Simone Wagner; Takeo Abumiya; Jacinta Lucero; Pauline Lee; Brian R. Copeland; Dietmar A. Seiffert; Gregory J. del Zoppo
The integrity of cerebral microvessels requires the close apposition of the endothelium to the astrocyte endfeet. Integrins α1β1 and α6β4 are cellular matrix receptors that may contribute to cerebral microvascular integrity. It has been hypothesized that focal ischemia alters integrin expression in a characteristic time-dependent manner consistent with neuron injury. The effects of middle cerebral artery occlusion (MCAO) and various periods of reperfusion on microvasclar integrin α1β1 and α6β4 expression were examined in the basal ganglia of 17 primates. Integrin subunits α1 and β1 colocalized with the endothelial cell antigen CD31 in nonischemic microvessels and with glial fibrillary acidic protein on astrocyte fibers. Rapid, simultaneous, and significant disappearance of both integrin α1 and β1 subunits and integrin α6β4 occurred by 2 hours MCAO, which was greatest in the region of neuron injury (ischemic core, Ic), and progressively less in the peripheral (Ip) and nonischemic regions (N). Transcription of subunit β1 mRNA on microvessels increased significantly in the Ic/Ip border and in multiple circular subregions within Ic. Microvascular integrin α1β1 and integrin α6β4 expression are rapidly and coordinately lost in Ic after MCAO. With loss of integrin α1β1, multiple regions of microvascular β1 mRNA up-regulation within Ic suggest that microvessel responses to focal ischemia are dynamic, and that multiple cores, not a single core, are generated. These changes imply that microvascular integrity is modified in a heterogeneous, but ordered pattern.
Stroke | 1997
Masafumi Tagaya; Kai-Feng Liu; Brian R. Copeland; Dietmar A. Seiffert; Robert Engler; Julio H. Garcia; Gregory J. del Zoppo
BACKGROUND AND PURPOSE Species- and model-dependent differences in cell response to focal brain ischemia may underlie differences in adhesion receptor expression. The aim of this study was to quantitatively evaluate the spatial and temporal distribution of dUTP incorporation into damaged DNA, as an indicator of ischemic injury, in the corpus striatum. METHODS Cerebral ischemia was produced in 16 nonhuman primates and 19 rats by occluding the middle cerebral artery (MCA:O) with reperfusion for various periods. In situ dUTP was incorporated into cells with DNA damage by terminal deoxynucleotidyl transferase (TdT), DNA polymerase I, or the Klenow fragment of DNA polymerase. Dual immunolabeling experiments with immunoprobes against neuronal, vascular, or glial marker proteins were performed. RESULTS Significant topographical differences in dUTP between the two species were seen. In both models the TdT and polymerase I regions changed characteristically during focal ischemia. The number and density of dUTP-labeled cells increased with time from MCA:O and were dramatically different between the species (2P < .001). By 2 hours of ischemia, the density of dUTP label was 48.8 +/- 10.3 cells/mm2 in the primate and 2.4 +/- 0.8 cells/mm2 in the rat (2P < .05), but these values became nearly identical by 24 hours of reperfusion. In the primate, 80.0 +/- 6.6% of labeled cells displayed microtubule-associated protein-2 antigen (at 2-hour MCA:O), while 1.8 +/- 0.5% were associated with microvessels at 24 hours of reperfusion. CONCLUSIONS In situ detection of DNA damage, accomplished by three methods, reveals distinct temporal, topographical, and density differences in ischemic injury to cells in the primate and the rat corpus striatum as a result of MCA:O.
Journal of Biological Chemistry | 2008
Catherine R. Burton; Jere E. Meredith; Donna M. Barten; Margi E. Goldstein; Carol M. Krause; Cathy J. Kieras; Lisa Sisk; Lawrence G. Iben; Craig Polson; Mark W. Thompson; Xu-Alan Lin; Jason A. Corsa; Tracey Fiedler; Maria Pierdomenico; Yang Cao; Arthur H. Roach; Joseph L. Cantone; Michael J. Ford; Dieter M. Drexler; Richard E. Olson; Michael G. Yang; Carl P. Bergstrom; Kate E. McElhone; Joanne J. Bronson; John E. Macor; Yuval Blat; Robert H. Grafstrom; Dietmar A. Seiffert; Robert Zaczek; Charles F. Albright
The amyloid-β (Aβ) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid-β precursor protein (APP) through consecutive proteolytic cleavages by β-site APP-cleaving enzyme and γ-secretase. Unexpectedly γ-secretase inhibitors can increase the secretion of Aβ peptides under some circumstances. This “Aβ rise” phenomenon, the same inhibitor causing an increase in Aβ at low concentrations but inhibition at higher concentrations, has been widely observed. Here we show that the Aβ rise depends on the β-secretase-derived C-terminal fragment of APP (βCTF) or C99 levels with low levels causing rises. In contrast, the N-terminally truncated form of Aβ, known as “p3,” formed by α-secretase cleavage, did not exhibit a rise. In addition to the Aβ rise, low βCTF or C99 expression decreased γ-secretase inhibitor potency. This “potency shift” may be explained by the relatively high enzyme to substrate ratio under conditions of low substrate because increased concentrations of inhibitor would be necessary to affect substrate turnover. Consistent with this hypothesis, γ-secretase inhibitor radioligand occupancy studies showed that a high level of occupancy was correlated with inhibition of Aβ under conditions of low substrate expression. The Aβ rise was also observed in rat brain after dosing with the γ-secretase inhibitor BMS-299897. The Aβ rise and potency shift are therefore relevant factors in the development of γ-secretase inhibitors and can be evaluated using appropriate choices of animal and cell culture models. Hypothetical mechanisms for the Aβ rise, including the “incomplete processing” and endocytic models, are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Donna L. Pedicord; Dietmar A. Seiffert; Yuval Blat
In this study, we tested the hypothesis that factor XI (FXI) activation occurs in plasma following activation of the extrinsic pathway by thrombin-mediated feedback activation. We used two different assays: (i) a direct measurement of activated FXI by ELISA and (ii) a functional assay that follows the activation of the coagulation cascade in the presence or absence of a FXI inhibiting antibody by monitoring thrombin activity. We failed to detect any FXI activation or functional contribution to the activation of the coagulation cascade in platelet poor or platelet-rich plasma, when activation was initiated by thrombin or tissue factor. Additionally, we found that, in the absence of a contact system inhibitor during blood draw, contact activation of FXI can mistakenly appear as thrombin- or tissue-factor-dependent activation. Thus, activation of FXI by thrombin in solution or on the surface of activated platelets does not appear to play a significant role in a plasma environment. These results call for reevaluation of the physiological role of the contact activation system in blood coagulation.
Journal of Medicinal Chemistry | 2014
Mimi L. Quan; Pancras C. Wong; Cailan Wang; Francis J. Woerner; Joanne M. Smallheer; Frank A. Barbera; Jeffrey M. Bozarth; Randi L. Brown; Mark R. Harpel; Joseph M. Luettgen; Paul E. Morin; Tara L. Peterson; Vidhyashankar Ramamurthy; Alan R. Rendina; Karen A. Rossi; Carol A. Watson; Anzhi Wei; Ge Zhang; Dietmar A. Seiffert; Ruth R. Wexler
Antithrombotic agents that are inhibitors of factor XIa (FXIa) have the potential to demonstrate robust efficacy with a low bleeding risk profile. Herein, we describe a series of tetrahydroquinoline (THQ) derivatives as FXIa inhibitors. Compound 1 was identified as a potent and selective tool compound for proof of concept studies. It exhibited excellent antithrombotic efficacy in rabbit thrombosis models and did not prolong bleeding times. This demonstrates proof of concept for the FXIa mechanism in animal models with a reversible, small molecule inhibitor.
Thrombosis and Haemostasis | 2013
Yiming Xu; Tian-Quan Cai; Gino Castriota; Yuchen Zhou; Lizbeth Hoos; Nina Jochnowitz; Christopher Loewrigkeit; John Cook; Alexandra Wickham; Joseph M. Metzger; Martin L. Ogletree; Dietmar A. Seiffert; Zhu Chen
Coagulation factor XII (FXII) plays a central role in initiating the intrinsic cascade of blood coagulation. Purified recombinant Human Albumin-tagged Infestin-4 (rHA-Infestin-4) is a recently described FXIIa inhibitor that displayed strong anticoagulant activity without compromising haemostasis in several animal models. We pursued detailed in vitro characterisation of rHA-Infestin-4 and demonstrated that it is a competitive inhibitor of FXIIa with slow on and off rate constants for binding (kon=5x10⁵ M⁻¹s⁻¹, koff=6x10⁻⁴ s⁻¹), it can block FXIIa activation of its physiological substrates (plasma prekallikrein and FXI), and it can inhibit ellagic acid-triggered thrombin generation in plasma. Potency and selectivity profiling in enzyme assays suggest that rHA-Infestin-4 is indeed highly potent on FXIIa (IC50=0.3 ± 0.06, 1.5 ± 0.06, 1.2 ± 0.09 nM, for human, rat, and rabbit FXIIa, respectively) with at least >100-fold selectivity against factors IIa, Xa, IXa, XIa, VIIa, and plasma kallikrein in all three species. rHA-Infestin-4 dose-dependently and markedly reduced clot weight in the arteriovenous shunt thrombosis model in rats and rabbits, accompanied with minimal increase in cuticle bleeding times in either species. rHA-Infestin-4 treatment at 5 mg/kg in rabbit resulted in a 13% reduction in ex vivo FXa activity, demonstrating a modest off-target effect. In summary, our findings confirmed and extended previous reports that inhibition of FXIIa by rHA-Infestin-4 can produce strong antithrombotic efficacy while preserving haemostasis. Our comprehensive selectivity profiling, mode of action, and kinetic studies of rHA-Infestin-4 reveal limitations of this molecule and offer new perspectives on any potential effort of discovering novel FXIIa inhibitors.
Journal of Medicinal Chemistry | 2014
Jon J. Hangeland; Todd J. Friends; Karen A. Rossi; Joanne M. Smallheer; Cailan Wang; Zhong Sun; James R. Corte; Tianan Fang; Pancras C. Wong; Alan R. Rendina; Frank A. Barbera; Jeffrey M. Bozarth; Joseph M. Luettgen; Carol A. Watson; Ge Zhang; Anzhi Wei; Vidhyashankar Ramamurthy; Paul E. Morin; Gregory S. Bisacchi; Srinath Subramaniam; Piramanayagam Arunachalam; Arvind Mathur; Dietmar A. Seiffert; Ruth R. Wexler; Mimi L. Quan
Novel inhibitors of FXIa containing an (S)-2-phenyl-1-(4-phenyl-1H-imidazol-2-yl)ethanamine core have been optimized to provide compound 16b, a potent, reversible inhibitor of FXIa (Ki = 0.3 nM) having in vivo antithrombotic efficacy in the rabbit AV-shunt thrombosis model (ID50 = 0.6 mg/kg + 1 mg kg(-1) h(-1)). Initial analog selection was informed by molecular modeling using compounds 11a and 11h overlaid onto the X-ray crystal structure of tetrahydroquinoline 3 complexed to FXIa. Further optimization was achieved by specific modifications derived from careful analysis of the X-ray crystal structure of the FXIa/11h complex. Compound 16b was well tolerated and enabled extensive pharmacologic evaluation of the FXIa mechanism up to the ID90 for thrombus inhibition.
Journal of Medicinal Chemistry | 2014
Wu Yang; Yufeng Wang; Amy Lai; Jennifer X. Qiao; Tammy C. Wang; Ji Hua; Laura A. Price; Hong Shen; Xue-Qing Chen; Pancras C. Wong; Earl J. Crain; Carol A. Watson; Christine Huang; Dietmar A. Seiffert; Robert Rehfuss; Ruth R. Wexler; Patrick Y. S. Lam
Adenosine diphosphate (ADP)-mediated platelet aggregation is signaled through two distinct G protein-coupled receptors (GPCR) on the platelet surface: P2Y12 and P2Y1. Blocking P2Y12 receptor is a clinically well-validated strategy for antithrombotic therapy. P2Y1 antagonists have been shown to have the potential to provide equivalent antithrombotic efficacy as P2Y12 inhibitors with reduced bleeding in preclinical animal models. We have previously reported the discovery of a potent and orally bioavailable P2Y1 antagonist, 1. This paper describes further optimization of 1 by introducing 4-aryl groups at the hydroxylindoline in two series. In the neutral series, 10q was identified with excellent potency and desirable pharmacokinetic (PK) profile. It also demonstrated similar antithrombotic efficacy with less bleeding compared with the known P2Y12 antagonist prasugrel in rabbit efficacy/bleeding models. In the basic series, 20c (BMS-884775) was discovered with an improved PK and liability profile over 1. These results support P2Y1 antagonism as a promising new antiplatelet target.
Journal of Medicinal Chemistry | 2015
Daniel L. Cheney; Jeffrey M. Bozarth; William J. Metzler; Paul E. Morin; Luciano Mueller; John A. Newitt; Alexandra H. Nirschl; Alan R. Rendina; James Tamura; Anzhi Wei; Xiao Wen; Nicholas R. Wurtz; Dietmar A. Seiffert; Ruth R. Wexler; E. Scott Priestley
A multidisciplinary, fragment-based screening approach involving protein ensemble docking and biochemical and NMR assays is described. This approach led to the discovery of several structurally diverse, neutral surrogates for cationic factor VIIa P1 groups, which are generally associated with poor pharmacokinetic (PK) properties. Among the novel factor VIIa inhibitory fragments identified were aryl halides, lactams, and heterocycles. Crystallographic structures for several bound fragments were obtained, leading to the successful design of a potent factor VIIa inhibitor with a neutral lactam P1 and improved permeability.