Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dietrich Althausen is active.

Publication


Featured researches published by Dietrich Althausen.


Journal of Geophysical Research | 2001

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze

V. Ramanathan; Paul J. Crutzen; J. Lelieveld; A. P. Mitra; Dietrich Althausen; James R. Anderson; Meinrat O. Andreae; Will Cantrell; Glen R. Cass; Chul Eddy Chung; Antony D. Clarke; James A. Coakley; W. D. Collins; William C. Conant; F. Dulac; Jost Heintzenberg; Andrew J. Heymsfield; Brent N. Holben; S. Howell; James G. Hudson; A. Jayaraman; Jeffrey T. Kiehl; T. N. Krishnamurti; Dan Lubin; Greg M. McFarquhar; T. Novakov; John A. Ogren; I. A. Podgorny; Kimberly A. Prather; Kory J. Priestley

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (-20±4 W m^(−2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.


Journal of Geophysical Research | 2001

Transport of boreal forest fire emissions from Canada to Europe

Caroline Forster; Ulla Wandinger; Gerhard Wotawa; Paul James; Ina Mattis; Dietrich Althausen; Peter G. Simmonds; Simon O'Doherty; S. Gerard Jennings; Christoph Kleefeld; Johannes Schneider; Thomas Trickl; Stephan Kreipl; Horst Jäger; Andreas Stohl

In August 1998, severe forest fires occurred in many parts of Canada, especially in the Northwest Territories. In the week from August 5 to 11, more than 1000 different fires burned >1 × 106 ha of boreal forest, the highest 1-week sum ever reported throughout the 1990s. In this study we can unambigously show for the first time that these fires caused pronounced large-scale haze layers above Europe and that they influenced concentrations of carbon monoxide and other trace gases at the surface station Mace Head in Ireland over a period of weeks. Transport took place across several thousands of kilometers. An example of such an event, in which a pronounced aerosol layer was observed at an altitude of 3–6 km over Germany during August 1998, is investigated in detail. Backward trajectories ending at the measured aerosol layer are calculated and shown to have their origin in the forest fire region. Simulations with a particle dispersion model reveal how a substantial amount of forest fire emissions was transported across the Atlantic. The resulting aerosol lamina over Europe is captured well by the model. In addition, the model demonstrates that the forest fire emissions polluted large regions over Europe during the second half of August 1998. Surface measurements at Mace Head are compared to the model results for an anthropogenic and a forest fire carbon monoxide tracer, respectively. While wet deposition removed considerable amounts of aerosol during its transport, forest fire carbon monoxide reached Europe in copious amounts. It is estimated that during August 1998, 32%, 10%, and 58% of the carbon monoxide enhancement over the background level at Mace Head were caused by European and North American anthropogenic emissions and forest fire emissions, respectively.


Tellus B | 2009

Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006

Volker Freudenthaler; Michael Esselborn; Matthias Wiegner; Birgit Heese; Matthias Tesche; Albert Ansmann; Detlef Müller; Dietrich Althausen; Martin Wirth; Andreas Fix; Gerhard Ehret; Peter Knippertz; C. Toledano; Josef Gasteiger; Markus Garhammer; Meinhard Seefeldner

Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.


Tellus B | 2009

Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM

Matthias Tesche; Albert Ansmann; Detlef Müller; Dietrich Althausen; Ina Mattis; Birgit Heese; Volker Freudenthaler; Matthias Wiegner; Michael Esselborn; Gianluca Pisani; Peter Knippertz

Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.


Journal of Geophysical Research | 2009

Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008

Matthias Tesche; Albert Ansmann; Detlef Müller; Dietrich Althausen; Ronny Engelmann; Volker Freudenthaler; Silke Groß

[1] Multiwavelength aerosol Raman lidar in combination with polarization lidar at Praia (14.9N, 23.5W), Cape Verde, is used to separate the optical properties of desert dust and biomass burning particles as a function of height in the mixed dust and smoke plumes over the tropical North Atlantic west of the African continent. The advanced lidar method furthermore permits the derivation of the single-scattering albedo and microphysical properties of the African biomass burning smoke. A case study is presented to discuss the potential of the technique. The observations were performed during the Saharan Mineral Dust Experiment (SAMUM) in January and February 2008. The height-resolved lidar results are compared with column-integrated products obtained with Aerosol Robotic Network Sun photometer. Good agreement is found. Furthermore, the findings are compared with lidar and aircraft observations recently performed in western Africa and with our previous lidar observations taken in tropical and subtropical regions of southern and eastern Asia. The SAMUM case study represents typical aerosol layering conditions in the tropical outflow regime of western Africa during winter season. Above a dense desert dust layer (with an optical depth of about 0.25 at 532 nm) which reached to 1500 m, a lofted layer consisting of desert dust (0.08 optical depth) and biomass burning smoke (0.24 optical depth) extended from 1500 to 5000 m height. Extinction values were 20 ± 10 Mm � 1 (desert dust) and 20–80 Mm � 1 (smoke) in the lofted plume. The smoke extinction-to-backscatter ratios were rather high, with values up to more than 100 sr, effective radii ranged from 0.15 to 0.35 mm, and the smoke single-scattering albedo was partly below 0.7.


Journal of Atmospheric and Oceanic Technology | 2000

Scanning 6-wavelength 11-channel aerosol lidar

Dietrich Althausen; Detlef Müller; Albert Ansmann; Ulla Wandinger; Helgard Hube; Ernst Clauder; Steffen Zörner

Abstract A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532, 710, 800, and 1064 nm. A beam-combination unit aligns all six laser beams onto one optical axis. Hence the same air volume is observed by all six beams. The combined beam can be directed into the atmosphere from −90° to +90° zenith angle by means of a turnable mirror unit. From the simultaneous detection of the elastic-backscatter signals and of the Raman signals backscattered by nitrogen molecules at 387 and 607 nm and by water vapor molecules at 660 nm, vertical profiles of the six backscatter coefficients between 355 and 1064 nm, of the extinction coefficients, and of the extinction-to-backscatter ratio at 355 and 532 nm, as well as of the water vapor mixing ratio, are determined. The optical thickness between the lidar and a given height can be retr...


Journal of Geophysical Research | 2003

Optical properties of the Indo-Asian haze layer over the tropical Indian Ocean

Kathleen Franke; Albert Ansmann; Detlef Müller; Dietrich Althausen; Chandra Venkataraman; M. Shekar Reddy; Frank Wagner; Rinus Scheele

[1] Multiwavelength backscatter and extinction profiling was performed with a unique aerosol Raman lidar at Hulhule (4� N, 73� E), Maldives, as part of the Indian Ocean Experiment (INDOEX) between February 1999 and March 2000. The Raman lidar allowed a direct determination of the volume extinction coefficient of the particles at 355 and 532 nm at ambient conditions. Heavily polluted air masses from the Asian continent passed over the Maldives during the northeast monsoon seasons. The mean 532-nm particle optical depth was about 0.3; maximum values of 0.7 were measured. Above the polluted marine boundary layer, lofted plumes were found up to 4000-m height. On average, the freetropospheric aerosol layers contributed 30–60% to the particle optical depth. The volume extinction coefficient at 532 nm typically ranged from 25 to 175 Mm � 1 in the elevated layers. The pollution plumes are characterized separately for the air masses from Southeast Asia, North India, and South India. The analysis includes backward trajectories and emission inventory data for India. The extinction-to-backscatter ratio (lidar ratio) at 532 nm was mostly between 30 and 100 sr, and accumulated at 50–80 sr for highly absorbing particles from northern India. The shift of the lidar-ratio distribution for northern Indian aerosols by about 20 sr toward larger values compared to European values is consistent


Journal of Geophysical Research | 2003

Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer

Detlef Müller; Ina Mattis; Ulla Wandinger; Albert Ansmann; Dietrich Althausen; Oleg Dubovik; Sabine Eckhardt; Andreas Stohl

and Sun photometer observations showed excellent agreement. Particle depolarization ratios of up to 25% were derived from lidar observations at 532 nm. Scattering phase functions retrieved from Sun photometer observations indicated particles of nonspherical shape. This shape caused unusually large particle extinction-to-backscatter (lidar) ratios at 532 nm in the range from 50 to 80 sr. There were substantial deviations of the lidar ratio at 532 nm derived from both measurement methods. They are explained by the effect of particle shape. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0360 Atmospheric Composition and Structure: Transmission and scattering of radiation; 1630 Global Change: Impact phenomena; 1640 Global Change: Remote sensing; KEYWORDS: microphysical properties, optical properties, Raman lidar, Saharan dust, Sun photometer Citation: Muller, D., I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer, J. Geophys. Res., 108(D12), 4345, doi:10.1029/2002JD002918, 2003.


Tellus B | 2011

Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2

Silke Groß; Matthias Tesche; Volker Freudenthaler; C. Toledano; Matthias Wiegner; Albert Ansmann; Dietrich Althausen; Meinhard Seefeldner

The particle linear depolarization ratio δp of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols from southern West Africa and Saharan dust was determined at three wavelengths with three lidar systems during the SAharan Mineral dUst experiMent 2 at the airport of Praia, Cape Verde, between 22 January and 9 February 2008. The lidar ratio Sp of these major types of tropospheric aerosols was analysed at two wavelengths. For Saharan dust, we find wavelength dependent mean particle linear depolarization ratios δp of 0.24–0.27 at 355 nm, 0.29–0.31 at 532 nm and 0.36–0.40 at 710 nm, and wavelength independent mean lidar ratios Sp of 48–70 sr. Mixtures of biomass-burning aerosols and dust show wavelength independent values of δp and Sp between 0.12–0.23 and 57–98 sr, respectively. The mean values of marine aerosols range independent of wavelength for δp from 0.01 to 0.03 and for Sp from 14 to 24 sr.


Geophysical Research Letters | 2009

Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest

Albert Ansmann; Holger Baars; Matthias Tesche; Detlef Müller; Dietrich Althausen; Ronny Engelmann; Theotonio Pauliquevis; Paulo Artaxo

[1] Quasi-simultaneous vertically resolved multiwavelength aerosol Raman lidar observations were conducted in the near field (Praia, Cape Verde, 15°N, 23.5°W) and in the far field (Manaus, Amazon basin, Brazil, 2.5°S, 60°W) of the long-range transport regime between West Africa and South America. Based on a unique data set (case study) of spectrally resolved backscatter and extinction coefficients, and of the depolarization ratio a detailed characterization of aerosol properties, vertical stratification, mixing, and aging behavior during the long-distance travel in February 2008 (dry season in western Africa, wet season in the Amazon basin) is presented. While highly stratified aerosol layers of dust and smoke up to 5.5 km height were found close to Africa, the aerosol over Manaus was almost well-mixed, reached up to 3.5 km, and mainly consisted of aged biomass burning smoke.

Collaboration


Dive into the Dietrich Althausen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Detlef Müller

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge