Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dihua Yu is active.

Publication


Featured researches published by Dihua Yu.


Nature Cell Biology | 2011

p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs

Chun-Ju Chang; Chi Hong Chao; Weiya Xia; Jer Yen Yang; Yan Xiong; Chia Wei Li; Wen Hsuan Yu; Sumaiyah K. Rehman; Jennifer L. Hsu; Heng Huan Lee; Mo Liu; Chun Te Chen; Dihua Yu; Mien Chie Hung

The epithelial–mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT–MET (mesenchymal–epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53–miR-200c pathway.


Nature Cell Biology | 2008

ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation

Jer Yen Yang; Cong S. Zong; Weiya Xia; Hirohito Yamaguchi; Qingqing Ding; Xiaoming Xie; Jing Yu Lang; Chien-Chen Lai; Chun-Ju Chang; Wei Chien Huang; Hsin Huang; Hsu Ping Kuo; Dung Fang Lee; Long Yuan Li; Huang-Chun Lien; Xiaoyun Cheng; King-Jen Chang; Chwan-Deng Hsiao; Fuu Jen Tsai; Chang Hai Tsai; Aysegul A. Sahin; William J. Muller; Gordon B. Mills; Dihua Yu; Gabriel N. Hortobagyi; Mien Chie Hung

The RAS–ERK pathway is known to play a pivotal role in differentiation, proliferation and tumour progression. Here, we show that Erk downregulates Forkhead box O 3a (FOXO3a) by directly interacting with and phosphorylating FOXO3a at Ser 294, Ser 344 and Ser 425, which consequently promotes cell proliferation and tumorigenesis. The ERK-phosphorylated FOXO3a degrades via an MDM2-mediated ubiquitin-proteasome pathway. However, the non-phosphorylated FOXO3a mutant is resistant to the interaction and degradation by murine double minute 2 (MDM2), thereby resulting in a strong inhibition of cell proliferation and tumorigenicity. Taken together, our study elucidates a novel pathway in cell growth and tumorigenesis through negative regulation of FOXO3a by RAS–ERK and MDM2.


Molecular Cell | 1998

Overexpression of ErbB2 Blocks Taxol-Induced Apoptosis by Upregulation of p21Cip1, which Inhibits p34Cdc2 Kinase

Dihua Yu; Tong Jing; Bolin Liu; Jun Yao; Ming Tan; Timothy J. McDonnell; Mien Chie Hung

Overexpression of the receptor tyrosine kinase p185ErbB2 confers Taxol resistance in breast cancers. Here, we investigated the underlying mechanisms and found that overexpression of p185ErbB2 inhibits Taxol-induced apoptosis. Taxol activates p34Cdc2 kinase in MDA-MB-435 breast cancer cells, leading to cell cycle arrest at the G2/M phase and, subsequently, apoptosis. A chemical inhibitor of p34Cdc2 and a dominant-negative mutant of p34Cdc2 blocked Taxol-induced apoptosis in these cells. Overexpression of p185ErbB2 in MDA-MB-435 cells by transfection transcriptionally upregulates p21Cip1, which associates with p34Cdc2, inhibits Taxol-mediated p34Cdc2 activation, delays cell entrance to G2/M phase, and thereby inhibits Taxol-induced apoptosis. In p21Cip1 antisense-transfected MDA-MB-435 cells or in p21-/- MEF cells, p185ErbB2 was unable to inhibit Taxol-induced apoptosis. Therefore, p21Cip1 participates in the regulation of a G2/M checkpoint that contributes to resistance to Taxol-induced apoptosis in p185ErbB2-overexpressing breast cancer cells.


Nature Medicine | 2011

Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways

Siyuan Zhang; Wen Chien Huang; Ping Li; Hua Guo; Say Bee Poh; Samuel W. Brady; Yan Xiong; Ling Ming Tseng; Shau Hsuan Li; Zhaoxi Ding; Aysegul A. Sahin; Francisco J. Esteva; Gabriel N. Hortobagyi; Dihua Yu

Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN. Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.


Oncogene | 2000

Overexpression of ErbB2 in cancer and ErbB2-targeting strategies.

Dihua Yu; Mien Chie Hung

This past decade has witnessed the remarkable advances in the understanding of the role of the erbB2 gene in cancers and the stunning progress in developing targeted therapies for erbB2-overexpressing cancers. Activation of the ErbB2 receptor signaling pathways can enhance various metastasis-associated properties that lead to an increase of cancer metastasis. Additionally, ErbB2 overexpression confers therapeutic resistance via receptor-mediated antiapoptotic signals. To limit these disastrous effects of the overexpressed ErbB2, various ErbB2-blocking strategies have been developed in the laboratories and several have been tested in clinical trials or approved as therapies for ErbB2 overexpressing cancers. In this article, we will discuss the detrimental effects of the erbB2 gene in cancers, with a focus on breast cancer. We will also outline ErbB2-targeting strategies as potential therapies for ErbB2-overexpressing cancers. Progress in understanding the molecular biology of ErbB2 and in molecular-based treatment of ErbB2-overexpressing tumors will bring great benefits to cancer patients.


Nature | 2015

Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth

Lin Zhang; Siyuan Zhang; Jun Yao; Frank J. Lowery; Qingling Zhang; Wen Chien Huang; Ping Li; Min Li; Xiao Wang; Chenyu Zhang; Hai Wang; Kenneth Ellis; Mujeeburahiman Cheerathodi; Joseph H. McCarty; Diane Palmieri; Jodi M. Saunus; Sunil R. Lakhani; Suyun Huang; Aysegul A. Sahin; Kenneth D. Aldape; Patricia S. Steeg; Dihua Yu

The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells’ adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumour cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that both human and mouse tumour cells with normal expression of PTEN, an important tumour suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumour cells is restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation is epigenetically regulated by microRNAs from brain astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting microRNAs to metastatic tumour cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumour cells leads to an increased secretion of the chemokine CCL2, which recruits IBA1-expressing myeloid cells that reciprocally enhance the outgrowth of brain metastatic tumour cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumour cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic and reciprocal cross-talk between tumour cells and the metastatic niche; importantly, they provide new opportunities for effective anti-metastasis therapies, especially of consequence for brain metastasis patients.


Clinical Cancer Research | 2004

Activation of the Akt/Mammalian Target of Rapamycin/4E-BP1 Pathway by ErbB2 Overexpression Predicts Tumor Progression in Breast Cancers

Xiaoyan Zhou; Ming Tan; Valerie S. Hawthorne; Kristine S. Klos; Keng-Hsueh Lan; Ying Yang; Wentao Yang; Terry L. Smith; Daren Shi; Dihua Yu

The Akt/mammalian target of rapamycin (mTOR)/4E-BP1 pathway is considered to be a central regulator of protein synthesis, involving the regulation of cell proliferation, differentiation, and survival. The inhibitors of mTOR as anticancer reagents are undergoing active evaluation in various malignancies including breast cancer. However, the activation status of the Akt/mTOR/4E-BP1 pathway and its potential roles in breast cancers remain unknown. Thus, we examined 165 invasive breast cancers with specific antibodies for the phosphorylation of Akt, mTOR, and 4E-BP1 by immunohistochemistry and compared them with normal breast epithelium, fibroadenoma, intraductal hyperplasia, and ductal carcinoma in situ. We discovered that the phosphorylation of Akt, mTOR, and 4E-BP1 increased progressively from normal breast epithelium to hyperplasia and abnormal hyperplasia to tumor invasion. Phosphorylated Akt, mTOR, and 4E-BP1 were positively associated with ErbB2 overexpression. Survival analysis showed that phosphorylation of each of these three markers was associated with poor disease-free survival independently. In vitro, we further confirmed the causal relationship between ErbB2 overexpression and mTOR activation, which was associated with enhanced invasive ability and sensitivity to a mTOR inhibitor, rapamycin. Our results, for the first time, demonstrate the following: (a) high levels of phosphorylation of Akt, mTOR, and 4E-BP1 in breast cancers, indicating activation of the Akt/mTOR/4E-BP1 pathway in breast cancer development and progression; (b) a link between ErbB2 and the Akt/mTOR/4E-BP1 pathway in breast cancers in vitro and in vivo, indicating the possible role of Akt/mTOR activation in ErbB2-mediated breast cancer progression; and (c) a potential role for this pathway in predicting the prognosis of patients with breast cancer, especially those treated with mTOR inhibitors.


American Journal of Pathology | 2010

PTEN, PIK3CA, p-AKT, and p-p70S6K Status: Association with Trastuzumab Response and Survival in Patients with HER2-Positive Metastatic Breast Cancer

Francisco J. Esteva; Hua Guo; Siyuan Zhang; Cesar Santa-Maria; Steven Stone; Jerry S. Lanchbury; Aysegul A. Sahin; Gabriel N. Hortobagyi; Dihua Yu

Phosphatase and tensin homolog (PTEN) is a key modulator of trastuzumab sensitivity in HER2-overexpressing breast cancer. Because PTEN opposes the downstream signaling of phosphoinositide 3-kinase (PI3K), we investigated the role of PTEN and other components of the PI3K pathway in trastuzumab resistance. We analyzed the status of PTEN, p-AKT-Ser473, and p-p70S6K-Thr389 using immunohistochemistry. PIK3CA mutation status was analyzed by direct sequencing. Primary tumor tissue was available from 137 patients with HER2-overexpressing metastatic breast cancer who had received trastuzumab-based chemotherapy. We observed that each of the four biomarkers alone did not significantly correlate with trastuzumab response, whereas PTEN loss alone significantly correlated with shorter survival times (P = 0.023). PI3K pathway activation, defined as PTEN loss and/or PIK3CA mutation, was associated with a poor response to trastuzumab (P = 0.047) and a shorter survival time (P = 0.015). PTEN loss was significantly associated with a poor response to trastuzumab (P = 0.028) and shorter survival time (P = 0.008) in patients who had received first-line trastuzumab and in patients with estrogen receptor- (P = 0.029) and progesterone receptor-negative tumors (P = 0.033). p-AKT-Ser473 and p-p70S6K-Thr389 each had a limited correlation with trastuzumab response. When these markers were combined with PTEN loss, an increased correlation with patient outcome was observed. In conclusion, PI3K pathway activation plays a pivotal role in trastuzumab resistance. Our findings may facilitate the evaluation of tumor response to trastuzumab-based and targeted therapies.


Molecular Carcinogenesis | 2008

Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers.

Yongkun Wei; Weiya Xia; Zhihong Zhang; Jinsong Liu; Huamin Wang; Nazmi Volkan Adsay; Constance Albarracin; Dihua Yu; James L. Abbruzzese; Gordon B. Mills; Robert C. Bast; Gabriel N. Hortobagyi; Mien Chie Hung

Methylation of lysine 27 on histone H3 (H3K27) by the EZH2 complex is an epigenetic mark that mediates gene silencing. EZH2 is overexpressed in many cancers and correlates with poor prognosis in both breast and prostate cancers. However, the status of H3K27 methylation and its clinical implication in cancer patients have not been reported. We thus examined trimethylation of H3K27 (H3K27me3) by immunohistochemistry and its association with clinical variables and prognosis in breast, ovarian, and pancreatic cancers. We found that H3K27me3 expression was significantly lower in breast, ovarian and pancreatic cancers than in normal tissues (62% in breast cancer vs. 88% in normal breast tissue, P = 0.001; 38.4% in ovarian cancer vs. 83.3% in normal ovarian tissue, P < 0.05; and 26% in pancreatic cancer vs. 89% in normal pancreatic tissue, P < 0.001). H3K27me3 expression showed significant prognostic impact in breast, ovarian and pancreatic cancers in univariate survival analyses. In all three cancer types, patients with low expression of H3K27me3 had significantly shorter overall survival time when compared with those with high H3K27me3 expression. In a multivariate model, H3K27me3 expression was an independent prognostic value for overall survival in all three cancer types. These results suggest that H3K27me3 expression is a prognostic indicator for clinical outcome in patients with breast, ovarian, and pancreatic cancers.


Journal of Clinical Oncology | 2011

Phase I/II Study of Trastuzumab in Combination With Everolimus (RAD001) in Patients With HER2-Overexpressing Metastatic Breast Cancer Who Progressed on Trastuzumab-Based Therapy

Phuong Khanh H. Morrow; Gerburg Wulf; Joe Ensor; Daniel J. Booser; Julia Moore; Peter R. Flores; Yan Xiong; Siyuan Zhang; Ian E. Krop; David Kindelberger; Jeanna Coviello; Aysegul A. Sahin; Rodolfo Nunez; Gabriel N. Hortobagyi; Dihua Yu; Francisco J. Esteva

PURPOSE Trastuzumab resistance has been linked to activation of the phosphoinositol 3-kinase (PI3K) pathway. Phosphatase and tensin homolog (PTEN) is a dual phosphatase that counteracts the PI3K function; PTEN loss leads to activation of the Akt cascade and the downstream mammalian target of rapamycin (mTOR). Preclinical studies demonstrated that mTOR inhibition sensitized the response to trastuzumab in mice with HER2 overexpressing and PTEN-deficient breast xenografts. Our trial evaluated the safety and efficacy of the combination of everolimus and trastuzumab in women with HER2-overexpressing metastatic breast cancer (MBC) that progressed on trastuzumab-based therapy. PATIENTS AND METHODS This represents a pooled analysis (n = 47), stemming from two trials that occurred concurrently in The University of Texas MD Anderson Cancer Center, Beth Israel Deaconess Medical Center, and Dana-Farber Cancer Institute. Patients with HER2-overexpressing MBC who had progressed on trastuzumab-based therapy received trastuzumab every 3 weeks in combination with daily everolimus. RESULTS Among 47 patients, the combination of everolimus and trastuzumab provided partial responses in seven patients (15%) and persistent stable disease (lasting 6 months or longer) in nine patients (19%), resulting in a clinical benefit rate of 34%. The median progression-free survival (PFS) was 4.1 month. Fatigue, infection, and mucositis were the predominant nonhematologic toxicities. Trastuzumab did not have significant influence on the pharmacokinetic profile of everolimus. Patients with PTEN loss demonstrated decreased overall survival (P = .048). However, PFS was not affected by PTEN loss. CONCLUSION Inhibition of mTOR results in clinical benefit and disease response in patients with trastuzumab-resistant HER2-overexpressing MBC.

Collaboration


Dive into the Dihua Yu's collaboration.

Top Co-Authors

Avatar

Mien Chie Hung

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Ping Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel N. Hortobagyi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aysegul A. Sahin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Weiya Xia

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hai Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ming Tan

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge