Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dijana Djureinovic is active.

Publication


Featured researches published by Dijana Djureinovic.


Science | 2015

Tissue-based map of the human proteome

Mathias Uhlén; Linn Fagerberg; Bjoern M. Hallström; Cecilia Lindskog; Per Oksvold; Adil Mardinoglu; Åsa Sivertsson; Caroline Kampf; Evelina Sjöstedt; Anna Asplund; IngMarie Olsson; Karolina Edlund; Emma Lundberg; Sanjay Navani; Cristina Al-Khalili Szigyarto; Jacob Odeberg; Dijana Djureinovic; Jenny Ottosson Takanen; Sophia Hober; Tove Alm; Per-Henrik Edqvist; Holger Berling; Hanna Tegel; Jan Mulder; Johan Rockberg; Peter Nilsson; Jochen M. Schwenk; Marica Hamsten; Kalle von Feilitzen; Mattias Forsberg

Protein expression across human tissues Sequencing the human genome gave new insights into human biology and disease. However, the ultimate goal is to understand the dynamic expression of each of the approximately 20,000 protein-coding genes and the function of each protein. Uhlén et al. now present a map of protein expression across 32 human tissues. They not only measured expression at an RNA level, but also used antibody profiling to precisely localize the corresponding proteins. An interactive website allows exploration of expression patterns across the human body. Science, this issue 10.1126/science.1260419 Transcriptomics and immunohistochemistry map protein expression across 32 human tissues. INTRODUCTION Resolving the molecular details of proteome variation in the different tissues and organs of the human body would greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on quantitative transcriptomics on a tissue and organ level combined with protein profiling using microarray-based immunohistochemistry to achieve spatial localization of proteins down to the single-cell level. We provide a global analysis of the secreted and membrane proteins, as well as an analysis of the expression profiles for all proteins targeted by pharmaceutical drugs and proteins implicated in cancer. RATIONALE We have used an integrative omics approach to study the spatial human proteome. Samples representing all major tissues and organs (n = 44) in the human body have been analyzed based on 24,028 antibodies corresponding to 16,975 protein-encoding genes, complemented with RNA-sequencing data for 32 of the tissues. The antibodies have been used to produce more than 13 million tissue-based immunohistochemistry images, each annotated by pathologists for all sampled tissues. To facilitate integration with other biological resources, all data are available for download and cross-referencing. RESULTS We report a genome-wide analysis of the tissue specificity of RNA and protein expression covering more than 90% of the putative protein-coding genes, complemented with analyses of various subproteomes, such as predicted secreted proteins (n = 3171) and membrane-bound proteins (n = 5570). The analysis shows that almost half of the genes are expressed in all analyzed tissues, which suggests that the gene products are needed in all cells to maintain “housekeeping” functions such as cell growth, energy generation, and basic metabolism. Furthermore, there is enrichment in metabolism among these genes, as 60% of all metabolic enzymes are expressed in all analyzed tissues. The largest number of tissue-enriched genes is found in the testis, followed by the brain and the liver. Analysis of the 618 proteins targeted by clinically approved drugs unexpectedly showed that 30% are expressed in all analyzed tissues. An analysis of metabolic activity based on genome-scale metabolic models (GEMS) revealed liver as the most metabolically active tissue, followed by adipose tissue and skeletal muscle. CONCLUSIONS A freely available interactive resource is presented as part of the Human Protein Atlas portal (www.proteinatlas.org), offering the possibility to explore the tissue-elevated proteomes in tissues and organs and to analyze tissue profiles for specific protein classes. Comprehensive lists of proteins expressed at elevated levels in the different tissues have been compiled to provide a spatial context with localization of the proteins in the subcompartments of each tissue and organ down to the single-cell level. The human tissue–enriched proteins. All tissue-enriched proteins are shown for 13 representative tissues or groups of tissues, stratified according to their predicted subcellular localization. Enriched proteins are mainly intracellular in testis, mainly membrane bound in brain and kidney, and mainly secreted in pancreas and liver. Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray–based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.


Molecular & Cellular Proteomics | 2014

Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.

Linn Fagerberg; Björn M. Hallström; Per Oksvold; Caroline Kampf; Dijana Djureinovic; Jacob Odeberg; Masato Habuka; Simin Tahmasebpoor; Angelika Danielsson; Karolina Edlund; Anna Asplund; Evelina Sjöstedt; Emma Lundberg; Cristina Al-Khalili Szigyarto; Marie Skogs; Jenny Ottosson Takanen; Holger Berling; Hanna Tegel; Jan Mulder; Peter Nilsson; Jochen M. Schwenk; Cecilia Lindskog; Frida Danielsson; Adil Mardinoglu; Åsa Sivertsson; Kalle von Feilitzen; Mattias Forsberg; Martin Zwahlen; IngMarie Olsson; Sanjay Navani

Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.


Science | 2017

A pathology atlas of the human cancer transcriptome.

Mathias Uhlén; Cheng Jiao Zhang; Sunjae Lee; Evelina Sjöstedt; Linn Fagerberg; Gholamreza Bidkhori; Rui Benfeitas; Muhammad Arif; Zhengtao Liu; Fredrik Edfors; Kemal Sanli; Kalle von Feilitzen; Per Oksvold; Emma Lundberg; Sophia Hober; Peter Nilsson; Johanna Sm Mattsson; Jochen M. Schwenk; Hans Brunnström; Bengt Glimelius; Tobias Sjöblom; Per-Henrik Edqvist; Dijana Djureinovic; Patrick Micke; Cecilia Lindskog; Adil Mardinoglu; Fredrik Pontén

Modeling the cancer transcriptome Recent initiatives such as The Cancer Genome Atlas have mapped the genome-wide effect of individual genes on tumor growth. By unraveling genomic alterations in tumors, molecular subtypes of cancers have been identified, which is improving patient diagnostics and treatment. Uhlen et al. developed a computer-based modeling approach to examine different cancer types in nearly 8000 patients. They provide an open-access resource for exploring how the expression of specific genes influences patient survival in 17 different types of cancer. More than 900,000 patient survival profiles are available, including for tumors of colon, prostate, lung, and breast origin. This interactive data set can also be used to generate personalized patient models to predict how metabolic changes can influence tumor growth. Science, this issue p. eaan2507 A systems biology approach should allow genome-wide exploration of the effect of individual proteins on cancer clinical outcomes. INTRODUCTION Cancer is a leading cause of death worldwide, and there is great need to define the molecular mechanisms driving the development and progression of individual tumors. The Hallmarks of Cancer has provided a framework for a deeper molecular understanding of cancer, and the focus so far has been on the genetic alterations in individual cancers, including genome rearrangements, gene amplifications, and specific cancer-driving mutations. Using systems-level approaches, it is now also possible to define downstream effects of individual genetic alterations in a genome-wide manner. RATIONALE In our study, we used a systems-level approach to analyze the transcriptome of 17 major cancer types with respect to clinical outcome, based on a genome-wide transcriptomics analysis of ~8000 individual patients with clinical metadata. The study was made possible through the availability of large open-access knowledge-based efforts such as the Cancer Genome Atlas and the Human Protein Atlas. Here, we used the data to perform a systems-level analysis of 17 major human cancer types, describing both interindividual and intertumor variation patterns. RESULTS The analysis identified candidate prognostic genes associated with clinical outcome for each tumor type; the results show that a large fraction of cancer protein-coding genes are differentially expressed and, in many cases, have an impact on overall patient survival. Systems biology analyses revealed that gene expression of individual tumors within a particular cancer varied considerably and could exceed the variation observed between distinct cancer types. No general prognostic gene necessary for clinical outcome was applicable to all cancers. Shorter patient survival was generally associated with up-regulation of genes involved in mitosis and cell growth and down-regulation of genes involved in cellular differentiation. The data allowed us to generate personalized genome-scale metabolic models for cancer patients to identify key genes involved in tumor growth. In addition, we explored tissue-specific genes associated with the dedifferentiation of tumor cells and the role of specific cancer testis antigens on a genome-wide scale. For lung and colorectal cancer, a selection of prognostic genes identified by the systems biology effort were analyzed in independent, prospective cancer cohorts using immunohistochemistry to validate the gene expression patterns at the protein level. CONCLUSION A Human Pathology Atlas has been created as part of the Human Protein Atlas program to explore the prognostic role of each protein-coding gene in 17 different cancers. Our atlas uses transcriptomics and antibody-based profiling to provide a standalone resource for cancer precision medicine. The results demonstrate the power of large systems biology efforts that make use of publicly available resources. Using genome-scale metabolic models, cancer patients are shown to have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. With more than 900,000 Kaplan-Meier plots, this resource allows exploration of the specific genes influencing clinical outcome for major cancers, paving the way for further in-depth studies incorporating systems-level analyses of cancer. All data presented are available in an interactive open-access database (www.proteinatlas.org/pathology) to allow for genome-wide exploration of the impact of individual proteins on clinical outcome in major human cancers. Schematic overview of the Human Pathology Atlas. A systems-level approach enables analysis of the protein-coding genes of 17 different cancer types from ~8000 patients. Results are available in an interactive open-access database. Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes.


JCI insight | 2016

Profiling cancer testis antigens in non–small-cell lung cancer

Dijana Djureinovic; Björn M. Hallström; Masafumi Horie; Johanna Sofia Margareta Mattsson; Linnea La Fleur; Linn Fagerberg; Hans Brunnström; Cecilia Lindskog; Katrin Madjar; Jörg Rahnenführer; Simon Ekman; Elisabeth Ståhle; Hirsh Koyi; Eva Brandén; Karolina Edlund; Jan G. Hengstler; Mats Lambe; Akira Saito; Johan Botling; Fredrik Pontén; Mathias Uhlén; Patrick Micke

Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.


Modern Pathology | 2017

PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability

Hans Brunnström; Anna Johansson; Sofia Westbom-Fremer; Max Backman; Dijana Djureinovic; Annika Patthey; Martin Isaksson-Mettävainio; Miklos Gulyas; Patrick Micke

Assessment of programmed cell death ligand 1 (PD-L1) immunohistochemical staining is used for decision on treatment with programmed cell death 1 and PD-L1 checkpoint inhibitors in lung adenocarcinomas and squamous cell carcinomas. This study aimed to compare the staining properties of tumor cells between the antibody clones 28-8, 22C3, SP142, and SP263 and investigate interrater variation between pathologists to see if these stainings can be safely evaluated in the clinical setting. Using consecutive sections from a tissue microarray with tumor tissue from 55 resected lung cancer cases, staining with five PD-L1 assays (28-8 from two different vendors, 22C3, SP142, and SP263) was performed. Seven pathologists individually evaluated the percentage of positive tumor cells, scoring each sample applying cutoff levels used in clinical studies: <1% positive tumor cells (score 0), 1–4% (score 1), 5–9% (score 2), 10–24% (score 3), 25–49% (score 4), and >50% positive tumor cells (score 5). Pairwise analysis of antibody clones showed weighted kappa values in the range of 0.45–0.91 with the highest values for comparisons with 22C3 and 28-8 and the lowest involving SP142. Excluding SP142 resulted in kappa 0.75–0.91. Weighted kappa for interobserver variation between pathologists was 0.71–0.96. Up to 20% of the cases were differently classified as positive or negative by any pathologist compared with consensus score using ≥1% positive tumor cells as cutoff. A significantly better agreement between pathologists was seen using ≥50% as cutoff (0–5% of cases). In conclusion, the concordance between the PD-L1 antibodies 22C3, 28-8 and SP263 is relatively good when evaluating lung cancers and suggests that any one of these assays may be sufficient as basis for decision on treatment with nivolumab, pembrolizumab, and durvalumab. The scoring of the pathologist presents an intrinsic source of error that should be considered especially at low PD-L1 scores.


Journal of Thoracic Oncology | 2016

The Impact of the Fourth Edition of the WHO Classification of Lung Tumours on Histological Classification of Resected Pulmonary NSCCs

Patrick Micke; Johanna Sofia Margareta Mattsson; Dijana Djureinovic; Björn Nodin; Karin Jirström; Lena Tran; Per Jönsson; Maria Planck; Johan Botling; Hans Brunnström

Introduction: Histopathological classification of lung cancer is of central importance in the diagnostic routine, and it guides therapy in most patients. The fourth edition of the World Health Organization (WHO) Classification of Lung Tumours was recently published and includes changes to the diagnostic procedure for non–small cell carcinomas (NSCCs), with more emphasis on immunohistochemical (IHC) staining. Methods: A total of 656 unselective cases of resected pulmonary NSCC were diagnosed according to the 2004 WHO classification. After IHC staining with cytokeratin 5, p40, p63, thyroid transcription factor 1 (clones 8G7G3/1 and SPT24), and napsin A, the diagnoses were revised in accordance with the new fourth edition of the WHO classification. Results: Reclassification led to a new histological annotation in 36 of the 656 cases (5%). Most notable was the decrease in cases previously classified as large cell carcinomas (56 versus 12 cases). This was partially due to the exclusion of 21 neuroendocrine tumors from this group, with 20 cases ascribed to the adenocarcinoma group on the basis of IHC markers. Only seven cases of adenocarcinoma or squamous cell carcinoma were reclassified after the addition of IHC staining. There was a substantial overlap in staining properties between different markers of squamous and adenocarcinomatous differentiation, respectively, but in 17 to 31 cases (3%–5%), the diagnosis depended on the choice of markers. Conclusions: The fourth edition of the WHO Classification of Lung Tumours leads to changes in histological type in 5% of resected NSCCs. The incorporation of IHC staining into NSCC diagnostics demands awareness that the choice of ancillary stains has an effect on diagnosis.INTRODUCTION: Histopathological classification of lung cancer is of central importance in the diagnostic routine and guides therapy in the majority of patients. The 4(th) edition of the WHO classification was recently published and includes changes to the diagnostic procedure of non-small cell carcinomas (NSCC) with more emphasis on immunohistochemical (IHC) staining.METHODS: 656 unselective cases of resected pulmonary NSCC were diagnosed according to the 2004 WHO classification. After IHC staining with cytokeratin 5, p40, p63, thyroid transcription factor 1 (clones 8G7G3/1 and SPT24) and napsin A the diagnoses were revised in accordance with the new 4(th) edition of the WHO classification.RESULTS: Reclassification led to a new histological annotation in 36 (5%) of the 656 cases. Most notable was the decrease of cases previously classified as large cell carcinomas (56 vs. 12 cases). This was partially due to the exclusion of 21 neuroendocrine tumors from this group, while 20 cases were ascribed to the group of adenocarcinoma based on IHC markers. Only 7 cases of adenocarcinoma or squamous cell carcinoma were reclassified after the addition of IHC staining. There was a substantial overlap in staining properties between different markers of squamous and adenocarcinomatous differentiation, respectively, but in 17-31 cases (3-5%) the diagnosis depended on the choice of markers.CONCLUSIONS: The 4(th) edition of the WHO classification of lung tumours leads to changes of histological type in 5% of resected NSCC cases. The incorporation of IHC staining in NSCC diagnostics demands awareness that the choice of ancillary stains has an effect on diagnosis.


Histopathology | 2014

A systematic analysis of commonly used antibodies in cancer diagnostics

Gabriela Gremel; Julia Bergman; Dijana Djureinovic; Per-Henrik Edqvist; Vikas Maindad; Bhavana M Bharambe; Wasif Ali Z. A. Khan; Sanjay Navani; Jacob Elebro; Karin Jirström; Dan Hellberg; Mathias Uhlén; Patrick Micke; Fredrik Pontén

Immunohistochemistry plays a pivotal role in cancer differential diagnostics. To identify the primary tumour from a metastasis specimen remains a significant challenge, despite the availability of an increasing number of antibodies. The aim of the present study was to provide evidence‐based data on the diagnostic power of antibodies used frequently for clinical differential diagnostics.


Modern Pathology | 2017

Reaching the limits of prognostication in non-small cell lung cancer: an optimized biomarker panel fails to outperform clinical parameters

Marianna Grinberg; Dijana Djureinovic; Hans Brunnström; Johanna Sofia Margareta Mattsson; Karolina Edlund; Jan G. Hengstler; Linnea La Fleur; Simon Ekman; Hirsh Koyi; E. Branden; Elisabeth Ståhle; Karin Jirström; Derek K. Tracy; Fredrik Pontén; Johan Botling; Jörg Rahnenführer; Patrick Micke

Numerous protein biomarkers have been analyzed to improve prognostication in non-small cell lung cancer, but have not yet demonstrated sufficient value to be introduced into clinical practice. Here, we aimed to develop and validate a prognostic model for surgically resected non-small cell lung cancer. A biomarker panel was selected based on (1) prognostic association in published literature, (2) prognostic association in gene expression data sets, (3) availability of reliable antibodies, and (4) representation of diverse biological processes. The five selected proteins (MKI67, EZH2, SLC2A1, CADM1, and NKX2-1 alias TTF1) were analyzed by immunohistochemistry on tissue microarrays including tissue from 326 non-small cell lung cancer patients. One score was obtained for each tumor and each protein. The scores were combined, with or without the inclusion of clinical parameters, and the best prognostic model was defined according to the corresponding concordance index (C-index). The best-performing model was subsequently validated in an independent cohort consisting of tissue from 345 non-small cell lung cancer patients. The model based only on protein expression did not perform better compared to clinicopathological parameters, whereas combining protein expression with clinicopathological data resulted in a slightly better prognostic performance (C-index: all non-small cell lung cancer 0.63 vs 0.64; adenocarcinoma: 0.66 vs 0.70, squamous cell carcinoma: 0.57 vs 0.56). However, this modest effect did not translate into a significantly improved accuracy of survival prediction. The combination of a prognostic biomarker panel with clinicopathological parameters did not improve survival prediction in non-small cell lung cancer, questioning the potential of immunohistochemistry-based assessment of protein biomarkers for prognostication in clinical practice.


The Journal of Pathology | 2018

Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune profiles that classify lung cancer patients: Immune profiling in NSCLC

Artur Mezheyeuski; Christian Holst Bergsland; Max Backman; Dijana Djureinovic; Tobias Sjöblom; Jarle Bruun; Patrick Micke

Semiquantitative assessment of immune markers by immunohistochemistry (IHC) has significant limitations for describing the diversity of the immune response in cancer. Therefore, we evaluated a fluorescence‐based multiplexed immunohistochemical method in combination with a multispectral imaging system to quantify immune infiltrates in situ in the environment of non‐small‐cell lung cancer (NSCLC). A tissue microarray including 57 NSCLC cases was stained with antibodies against CD8, CD20, CD4, FOXP3, CD45RO, and pan‐cytokeratin, and immune cells were quantified in epithelial and stromal compartments. The results were compared with those of conventional IHC, and related to corresponding RNA‐sequencing (RNAseq) expression values. We found a strong correlation between the visual and digital quantification of lymphocytes for CD45RO (correlation coefficient: r = 0.52), FOXP3 (r = 0.87), CD4 (r = 0.79), CD20 (r = 0.81) and CD8 (r = 0.90) cells. The correlation with RNAseq data for digital quantification (0.35–0.65) was comparable to or better than that for visual quantification (0.38–0.58). Combination of the signals of the five immune markers enabled further subpopulations of lymphocytes to be identified and localized. The specific pattern of immune cell infiltration based either on the spatial distribution (distance between regulatory CD8+ T and cancer cells) or the relationships of lymphocyte subclasses with each other (e.g. cytotoxic/regulatory cell ratio) were associated with patient prognosis. In conclusion, the fluorescence multiplexed immunohistochemical method, based on only one tissue section, provided reliable quantification and localization of immune cells in cancer tissue. The application of this technique to clinical biopsies can provide a basic characterization of immune infiltrates to guide clinical decisions in the era of immunotherapy. Copyright


BMC Cancer | 2017

A systematic search strategy identifies cubilin as independent prognostic marker for renal cell carcinoma

Gabriela Gremel; Dijana Djureinovic; Marjut Niinivirta; Alexander Laird; Oscar Ljungqvist; Henrik Johannesson; Julia Bergman; Perk-Henrik Edqvist; Sanjay Navani; Naila Khan; Tushar Patil; Åsa Sivertsson; Mathias Uhlén; David J. Harrison; Gustav Ullenhag; Grant D. Stewart; Fredrik Pontén

BackgroundThere is an unmet clinical need for better prognostic and diagnostic tools for renal cell carcinoma (RCC).MethodsHuman Protein Atlas data resources, including the transcriptomes and proteomes of normal and malignant human tissues, were searched for RCC-specific proteins and cubilin (CUBN) identified as a candidate. Patient tissue representing various cancer types was constructed into a tissue microarray (n = 940) and immunohistochemistry used to investigate the specificity of CUBN expression in RCC as compared to other cancers. Two independent RCC cohorts (n = 181; n = 114) were analyzed to further establish the sensitivity of CUBN as RCC-specific marker and to explore if the fraction of RCCs lacking CUBN expression could predict differences in patient survival.ResultsCUBN was identified as highly RCC-specific protein with 58% of all primary RCCs staining positive for CUBN using immunohistochemistry. In venous tumor thrombi and metastatic lesions, the frequency of CUBN expression was increasingly lost. Clear cell RCC (ccRCC) patients with CUBN positive tumors had a significantly better prognosis compared to patients with CUBN negative tumors, independent of T-stage, Fuhrman grade and nodal status (HR 0.382, CI 0.203–0.719, P = 0.003).ConclusionsCUBN expression is highly specific to RCC and loss of the protein is significantly and independently associated with poor prognosis. CUBN expression in ccRCC provides a promising positive prognostic indicator for patients with ccRCC. The high specificity of CUBN expression in RCC also suggests a role as a new diagnostic marker in clinical cancer differential diagnostics to confirm or rule out RCC.

Collaboration


Dive into the Dijana Djureinovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linn Fagerberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mathias Uhlén

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn M. Hallström

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jochen M. Schwenk

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge