Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dijana Matak-Vinkovic is active.

Publication


Featured researches published by Dijana Matak-Vinkovic.


Science | 2011

Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding

Min Zhou; Nina Morgner; Nelson P. Barrera; Argyris Politis; Shoshanna C Isaacson; Dijana Matak-Vinkovic; Takeshi Murata; Ricardo A. Bernal; Daniela Stock; Carol V. Robinson

The effect of lipids and nucleotides on the soluble head domain and membrane base domain is examined in an intact adenosine triphosphatase. The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.


Accounts of Chemical Research | 2008

Subunit architecture of intact protein complexes from mass spectrometry and homology modeling.

Thomas Taverner; Helena Hernández; Michal Sharon; Brandon T. Ruotolo; Dijana Matak-Vinkovic; Damien P. Devos; Robert B. Russell; Carol V. Robinson

Proteomic studies have yielded detailed lists of protein components. Relatively little is known, however, of interactions between proteins or of their spatial arrangement. To bridge this gap, we are developing a mass spectrometry approach based on intact protein complexes. By studying intact complexes, we show that we are able to not only determine the stoichiometry of all subunits present but also deduce interaction maps and topological arrangements of subunits. To construct an interaction network, we use tandem mass spectrometry to define peripheral subunits and partial denaturation in solution to generate series of subcomplexes. These subcomplexes are subsequently assigned using tandem mass spectrometry. To facilitate this assignment process, we have developed an iterative search algorithm (SUMMIT) to both assign protein subcomplexes and generate protein interaction networks. This software package not only allows us to construct the subunit architecture of protein assemblies but also allows us to explore the limitations and potential of our approach. Using series of hypothetical complexes, generated at random from protein assemblies containing between six and fourteen subunits, we highlight the significance of tandem mass spectrometry for defining subunits present. We also demonstrate the importance of pairwise interactions and the optimal numbers of subcomplexes required to assign networks with up to fourteen subunits. To illustrate application of our approach, we describe the overall architecture of two endogenous protein assemblies isolated from yeast at natural expression levels, the 19S proteasome lid and the RNA exosome. In constructing our models, we did not consider previous electron microscopy images but rather deduced the subunit architecture from series of subcomplexes and our network algorithm. The results show that the proteasome lid complex consists of a bicluster with two tetrameric lobes. The exosome lid, by contrast, is a six-membered ring with three additional bridging subunits that confer stability to the ring and with a large subunit located at the base. Significantly, by combining data from MS and homology modeling, we were able to construct an atomic model of the yeast exosome. In summary, the architectural and atomic models of both protein complexes described here have been produced in advance of high-resolution structural data and as such provide an initial model for testing hypotheses and planning future experiments. In the case of the yeast exosome, the atomic model is validated by comparison with the atomic structure from X-ray diffraction of crystals of the reconstituted human exosome, which is homologous to that of the yeast. Overall therefore this mass spectrometry and homology modeling approach has given significant insight into the structure of two previously intractable protein complexes and as such has broad application in structural biology.


Nature | 2014

A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome

Aline C. Simon; Jin C. Zhou; Rajika L. Perera; Frederick van Deursen; Cecile Evrin; Marina E. Ivanova; Mairi L. Kilkenny; Ludovic Renault; Svend Kjær; Dijana Matak-Vinkovic; Karim Labib; Alessandro Costa; Luca Pellegrini

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45–MCM–GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a β-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.


The EMBO Journal | 2003

Structural Constraints on protein self-processing in L-aspartate-alpha-decarboxylase

Florian Schmitzberger; Mairi L. Kilkenny; Carina M. C. Lobley; Michael E. Webb; Mladen Vinković; Dijana Matak-Vinkovic; Michael Witty; Dimitri Y. Chirgadze; Alison G. Smith; Chris Abell; Tom L. Blundell

Aspartate decarboxylase, which is translated as a pro‐protein, undergoes intramolecular self‐cleavage at Gly24–Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24→Ser, His11→Ala, Ser25→Ala, Ser25→Cys and Ser25→Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self‐processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 Oγ and a water molecule form an ‘oxyanion hole’ that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid–base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self‐processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self‐processing systems, and suggests that models of the cleavage site of such enzymes based on Ser→Ala or Ser→Thr mutants alone may lead to erroneous interpretations of the mechanism.


Biochemistry | 2013

Binding Interactions between Long Noncoding RNA HOTAIR and PRC2 Proteins

Liang Wu; Pierre Murat; Dijana Matak-Vinkovic; Adele Murrell; Shankar Balasubramanian

Long noncoding RNAs (lncRNAs) play a key role in the epigenetic regulation of cells. Many of these lncRNAs function by interacting with histone repressive proteins of the Polycomb group (PcG) family, recruiting them to gene loci to facilitate silencing. Although there are now many RNAs known to interact with the PRC2 complex, little is known about the details of the molecular interactions. Here, we show that the PcG protein heterodimer EZH2-EED is necessary and sufficient for binding to the lncRNA HOTAIR. We also show that protein recognition occurs within a folded 89-mer domain of HOTAIR. This 89-mer represents a minimal binding motif, as further deletion of nucleotides results in substantial loss of affinity for PRC2. These findings provide molecular insights into an important system involved in epigenetic regulation.


Structure | 2011

Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site

Victor M. Bolanos-Garcia; Tiziana Lischetti; Dijana Matak-Vinkovic; Ernesto Cota; Peter J. Simpson; Dimitri Y. Chirgadze; David R. Spring; Carol V. Robinson; Jakob Nilsson; Tom L. Blundell

Summary The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this process and by interacting with Blinkin, link the SAC with the kinetochore, the macromolecular assembly that connects microtubules with centromeric DNA. Here, we identify the Blinkin motif critical for interaction with BUBR1, define the stoichiometry and affinity of the interaction, and present a 2.2 Å resolution crystal structure of the complex. The structure defines an unanticipated BUBR1 region responsible for the interaction and reveals a novel Blinkin motif that undergoes a disorder-to-order transition upon ligand binding. We also show that substitution of several BUBR1 residues engaged in binding Blinkin leads to defects in the SAC, thus providing the first molecular details of the recognition mechanism underlying kinetochore-SAC signaling.


Angewandte Chemie | 2015

Spontaneous CO Release from RuII(CO)2–Protein Complexes in Aqueous Solution, Cells, and Mice†

Miguel Chaves-Ferreira; Inês S. Albuquerque; Dijana Matak-Vinkovic; Ana C. Coelho; Sandra M. Carvalho; Lígia M. Saraiva; Carlos C. Romão; Gonçalo J. L. Bernardes

We demonstrate that RuII(CO)2–protein complexes, formed by the reaction of the hydrolytic decomposition products of [fac-RuCl(κ2-H2NCH2CO2)(CO)3] (CORM-3) with histidine residues exposed on the surface of proteins, spontaneously release CO in aqueous solution, cells, and mice. CO release was detected by mass spectrometry (MS) and confocal microscopy using a CO-responsive turn-on fluorescent probe. These findings support our hypothesis that plasma proteins act as CO carriers after in vivo administration of CORM-3. CO released from a synthetic bovine serum albumin (BSA)–RuII(CO)2 complex leads to downregulation of the cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α in cancer cells. Finally, administration of BSA–RuII(CO)2 in mice bearing a colon carcinoma tumor results in enhanced CO accumulation at the tumor. Our data suggest the use of RuII(CO)2–protein complexes as viable alternatives for the safe and spatially controlled delivery of therapeutic CO in vivo.


Biochemical Society Transactions | 2011

Non-homologous end-joining partners in a helical dance: structural studies of XLF–XRCC4 interactions

Qian Wu; Takashi Ochi; Dijana Matak-Vinkovic; Carol V. Robinson; Dimitri Y. Chirgadze; Tom L. Blundell

XRCC4 (X-ray cross-complementation group 4) and XLF (XRCC4-like factor) are two essential interacting proteins in the human NHEJ (non-homologous end-joining) pathway that repairs DNA DSBs (double-strand breaks). The individual crystal structures show that the dimeric proteins are homologues with protomers containing head domains and helical coiled-coil tails related by approximate two-fold symmetry. Biochemical, mutagenesis, biophysical and structural studies have identified the regions of interaction between the two proteins and suggested models for the XLF-XRCC4 complex. An 8.5 Å (1 Å = 0.1 nm) resolution crystal structure of XLF-XRCC4 solved by molecular replacement, together with gel filtration and nano-ESI (nano-electrospray ionization)-MS results, demonstrates that XLF and XRCC4 dimers interact through their head domains and form an alternating left-handed helical structure with polypeptide coiled coils and pseudo-dyads of individual XLF and XRCC4 dimers at right angles to the helical axis.


Nature Communications | 2014

Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition

Michael V. Gormally; Thomas S. Dexheimer; Giovanni Marsico; Deborah A. Sanders; Christopher R. Lowe; Dijana Matak-Vinkovic; Sam Michael; Ajit Jadhav; Ganesha Rai; David J. Maloney; Anton Simeonov; Shankar Balasubramanian

The transcription factor FOXM1 binds to sequence-specific motifs on DNA (C/TAAACA) through its DNA binding domain (DBD), and activates proliferation- and differentiation-associated genes. Aberrant overexpression of FOXM1 is a key feature in oncogenesis and progression of many human cancers. Here — from a high-throughput screen applied to a library of 54,211 small molecules — we identify novel small molecule inhibitors of FOXM1 that block DNA binding. One of the identified compounds: FDI-6 (NCGC00099374) is characterized in depth and is shown to bind directly to FOXM1 protein, to displace FOXM1 from genomic targets in MCF-7 breast cancer cells, and induce concomitant transcriptional down-regulation. Global transcript profiling of MCF-7 cells by RNA-seq shows that FDI-6 specifically down regulates FOXM1-activated genes with FOXM1 occupancy confirmed by ChIP-seq. This small molecule mediated effect is selective for FOXM1-controlled genes with no effect on genes regulated by homologous forkhead family factors.


Structure | 2009

The Crystal Structure of the N-Terminal Region of BUB1 Provides Insight into the Mechanism of BUB1 Recruitment to Kinetochores

Victor M. Bolanos-Garcia; Tomomi Kiyomitsu; Sheena D'Arcy; Dimitri Y. Chirgadze; J. Günter Grossmann; Dijana Matak-Vinkovic; Ashok R. Venkitaraman; Mitsuhiro Yanagida; Carol V. Robinson; Tom L. Blundell

Summary The interaction of the central mitotic checkpoint component BUB1 with the mitotic kinetochore protein Blinkin is required for the kinetochore localization and function of BUB1 in the mitotic spindle assembly checkpoint, the regulatory mechanism of the cell cycle that ensures the even distribution of chromosomes during the transition from metaphase to anaphase. Here, we report the 1.74 Å resolution crystal structure of the N-terminal region of BUB1. The structure is organized as a tandem arrangement of three divergent units of the tetratricopeptide motif. Functional assays in vivo of native and site-specific mutants identify the residues of human BUB1 important for the interaction with Blinkin and define one region of potential therapeutic interest. The structure provides insight into the molecular basis of Blinkin-specific recognition by BUB1 and, on a broader perspective, of the mechanism that mediates kinetochore localization of BUB1 in checkpoint-activated cells.

Collaboration


Dive into the Dijana Matak-Vinkovic's collaboration.

Top Co-Authors

Avatar

Chris Abell

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nelson P. Barrera

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge