Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dijie Liu is active.

Publication


Featured researches published by Dijie Liu.


Bioconjugate Chemistry | 2010

Comparative Evaluation of Three 64Cu-Labeled E. coli Heat-Stable Enterotoxin Analogues for PET Imaging of Colorectal Cancer

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Charles J. Smith; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert; Michael F. Giblin

Analogues of the E. coli heat-stable enterotoxin (STh) are currently under study as both imaging and therapeutic agents for colorectal cancer. Studies have shown that the guanylate cyclase C (GC-C) receptor is commonly expressed in colorectal cancers. It has also been shown that STh peptides inhibit the growth of tumor cells expressing GC-C. The ability to determine GC-C status of tumor tissue using in vivo molecular imaging techniques would provide a useful tool for the optimization of GC-C-targeted therapeutics. In this work, we have compared receptor binding affinities, internalization/efflux rates, and in vivo biodistribution patterns of an STh analogue linked to N-terminal DOTA, TETA, and NOTA chelating moieties and radiolabeled with Cu-64. The peptide F(19)-STh(2-19) was N-terminally labeled with three different chelating groups via NHS ester activation and characterized by RP-HPLC, ESI-MS, and GC-C receptor binding assays. The purified conjugates were radiolabeled with Cu-64 and used for in vitro internalization/efflux, in vivo biodistribution, and in vivo PET imaging studies. In vivo experiments were carried out using SCID mice bearing T84 human colorectal cancer tumor xenografts. Incorporation of DOTA-, TETA-, and NOTA-chelators at the N-terminus of the peptide F(19)-STh(2-19) resulted in IC(50)s between 1.2 and 3.2 nM. In vivo, tumor localization was similar for all three compounds, with 1.2-1.3%ID/g at 1 h pi and 0.58-0.83%ID/g at 4 h pi. The principal difference between the three compounds related to uptake in nontarget tissues, principally kidney and liver. At 1 h pi, (64)Cu-NOTA-F(19)-STh(2-19) demonstrated significantly (p < 0.05) lower uptake in liver than (64)Cu-DOTA-F(19)-STh(2-19) (0.36 +/- 0.13 vs 1.21 +/- 0.65%ID/g) and significantly (p < 0.05) lower uptake in kidney than (64)Cu-TETA-F(19)-STh(2-19) (3.67 +/- 1.60 vs 11.36 +/- 2.85%ID/g). Use of the NOTA chelator for coordination of Cu-64 in the context of E. coli heat-stable enterotoxin analogues results in higher tumor/nontarget tissue ratios at 1 h pi than either DOTA or TETA macrocycles. Heat-stable enterotoxin-based radiopharmaceuticals such as these provide a means of noninvasively determining GC-C receptor status in colorectal cancers by PET.


Nuclear Medicine and Biology | 2015

Characterization and evaluation of DOTA-conjugated Bombesin/ RGD-antagonists for prostate cancer tumor imaging and therapy

Tamila Stott Reynolds; Rebecca Schehr; Dijie Liu; Jingli Xu; Yubin Miao; Timothy J. Hoffman; Tammy L. Rold; Michael R. Lewis; Charles J. Smith

INTRODUCTION Here we present the metallation, characterization, in vivo and in vitro evaluations of dual-targeting, peptide-based radiopharmaceuticals with utility for imaging and potentially treating prostate tumors by virtue of their ability to target the αVβ3 integrin or the gastrin releasing peptide receptor (GRPr). METHODS [RGD-Glu-6Ahx-RM2] (RGD: Arg-Gly-Asp; Glu: glutamic acid; 6-Ahx: 6-amino hexanoic acid; RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2)) was conjugated to a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bifunctional chelator (BFCA) purified via reversed-phase high-performance liquid chromatography (RP-HPLC), characterized by electrospray ionization-mass spectrometry (ESI-MS), and radiolabeled with (111)In or (177)Lu. Natural-metallated compounds were assessed for binding affinity for the αVβ3 integrin or GRPr in human glioblastoma U87-MG and prostate PC-3 cell lines and stability prior to in vivo evaluation in normal CF-1 mice and SCID mice xenografted with PC-3 cells. RESULTS Competitive displacement binding assays with PC-3 and U87-MG cells revealed high to moderate binding affinity for the GRPr or the αVβ3 integrin (IC50 range of 5.39±1.37 nM to 9.26±0.00 nM in PC-3 cells, and a range of 255±47 nM to 321±85 nM in U87-MG cells). Biodistribution studies indicated high tumor uptake in PC-3 tumor-bearing mice (average of 7.40±0.53% ID/g at 1h post-intravenous injection) and prolonged retention of tracer (mean of 4.41±0.91% ID/g at 24h post-intravenous injection). Blocking assays corroborated the specificity of radioconjugates for each target. Micro-single photon emission computed tomography (microSPECT) confirmed favorable radiouptake profiles in xenografted mice at 20h post-injection. CONCLUSIONS [RGD-Glu-[(111)In-DO3A]-6-Ahx-RM2] and [RGD-Glu-[(177)Lu- DO3A]-6-Ahx-RM2] show favorable pharmacokinetic and radiouptake profiles, meriting continued evaluation for molecular imaging in murine U87-MG/PC-3 xenograft models and radiotherapy studies with (177)Lu and (90)Y conjugates. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE These heterovalent, peptide-targeting ligands perform comparably with many mono- and multivalent conjugates with the potential benefit of increased sensitivity for detecting cancer cells exhibiting differential expression of target receptors.


Nuclear Medicine and Biology | 2014

Comparative biodistributions and dosimetry of [177Lu]DOTA-anti-bcl-2-PNA-Tyr3-octreotate and [177Lu]DOTA-Tyr3-octreotate in a mouse model of B-cell lymphoma/leukemia

Ethan R. Balkin; Dijie Liu; Fang Jia; Varyanna C. Ruthengael; Suzanne Shaffer; William H. Miller; Michael R. Lewis

INTRODUCTION The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene in non-Hodgkins lymphoma (NHL) is a dominant inhibitor of apoptosis. We developed a (177)Lu-labeled bcl-2 antisense peptide nucleic acid (PNA)-peptide conjugate designed for dual modality NHL therapy, consisting of a radiopharmaceutical capable of simultaneously down-regulating apoptotic resistance and delivering cytotoxic internally emitted radiation. METHODS DOTA-anti-bcl-2-Tyr(3)-octreotate was synthesized, labeled with (177)Lu, and purified using RP-HPLC. The PNA-peptide conjugate was evaluated in Mec-1 NHL-bearing mice and compared to [(177)Lu]DOTA-Tyr(3)-octreotate in biodistribution and excretion studies. These data were then used to generate in vivo dosimetry models. RESULTS The PNA-peptide conjugate was readily prepared and radiolabeled in high yield and radiochemical purity. An in vivo blocking study determined that administration of 50 μg of non-radioactive PNA-peptide was the optimal mass for maximum delivery to the tumor. Based on that result, a dosing regimen of (177)Lu-PNA-peptide, for radiologic effect, followed by the optimal mass of non-radioactive compound, for antisense effect, was designed. Using that dosing regimen, biodistribution of the PNA-peptide showed uptake in the tumor with minimal washout over a 4-day period. Uptakes in receptor-positive normal organs were low and displayed nearly complete washout by 24h. Dosimetry models showed that the tumor absorbed dose of the PNA-peptide conjugate was approximately twice that of the peptide-only conjugate. CONCLUSIONS Biodistribution data showed specific tumor targeting of the (177)Lu-labeled PNA-peptide compound with minimal receptor-positive normal tissue uptake when compared to [(177)Lu]DOTA-Tyr(3)-octreotate. In vivo dosimetry models predicted a more favorable tumor absorbed dose from [(177)Lu]DOTA-anti-bcl-2-Tyr(3)-octreotate.


Nuclear Medicine and Biology | 2015

Synthesis and evaluation of a new bifunctional NETA chelate for molecular targeted radiotherapy using90Y or177Lu

Chi Soo Kang; Yunwei Chen; Hyunbeom Lee; Dijie Liu; Xiang Sun; Junghun Kweon; Michael R. Lewis; Hyun-Soon Chong

INTRODUCTION Therapeutic potential of β-emitting cytotoxic radionuclides (90)Y and (177)Lu has been demonstrated in numerous preclinical and clinical trials. A bifunctional chelate that can effectively complex with the radioisotopes is a critical component for molecular targeted radiotherapy (90)Y and (177)Lu. A new bifunctional chelate 5p-C-NETA with a relatively long alkyl spacer between the chelating backbone and the functional unit for conjugation to a tumor targeting moiety was synthesized. 5p-C-NETA was conjugated to a model targeting moiety, a cyclic Arg-Gly-Asp-D-Tyr-Lys (RGDyK) peptide binding integrin αvβ3 protein overexpressed on various cancers. 5p-C-NETA was conjugated to c(RGDyK) peptide and evaluated for potential use in molecular targeted radiotherapy of (90)Y and (177)Lu. METHODS 5p-C-NETA conjugated with c(RGDyK) was evaluated in vitro for radiolabeling, serum stability, binding affinity, and the result of the in vitro studies of 5p-C-NETA-c(RGDyK) was compared to that of 3p-C-NETA-c(RGDyK). (177)Lu-5p-C-NETA-c(RGDyK) was further evaluated for in vivo biodistribution using gliobastoma bearing mice. RESULT The new chelate rapidly and tightly bound to a cytotoxic radioisotope for cancer therapy, (90)Y or (177)Lu with excellent radiolabeling efficiency and maximum specific activity under mild condition (>99%, RT, <1 min). (90)Y- and (177)Lu-radiolabeled complexes of the new chelator remained stable in human serum without any loss of the radiolanthanide for 14 days. Introduction of the tumor targeting RGD moiety to the new chelator made little impact on complexation kinetics and stability with (90)Y or (177)Lu. (177)Lu-radiolabeled 5p-C-NETA-c(RGDyK) conjugate was shown to target tumors in mice and produced a favorable in vivo stability profile. CONCLUSION The results of in vitro and in vivo evaluation suggest that 5p-C-NETA is an effective bifunctional chelate of (90)Y and (177)Lu that can be applied for generation of versatile molecular targeted radiopharmaceuticals.


Bioorganic & Medicinal Chemistry | 2015

Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of 90Y and 177Lu

Hyun-Soon Chong; Xiang Sun; Yunwei Chen; Inseok Sin; Chi Soo Kang; Michael R. Lewis; Dijie Liu; Varyanna C. Ruthengael; Yongliang Zhong; Ningjie Wu; Hyun A. Song

Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkins lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu.


Journal of Inorganic Biochemistry | 2016

Transferrin conjugates of triazacyclononane-based bifunctional NE3TA chelates for PET imaging: Synthesis, Cu-64 radiolabeling, and in vitro and in vivo evaluation.

Chi Soo Kang; Ningjie Wu; Yunwei Chen; Xiang Sun; Nilantha Bandara; Dijie Liu; Michael R. Lewis; Buck E. Rogers; Hyun-Soon Chong

Three different polyaminocarboxylate-based bifunctional NE3TA (7-[2-[carboxymethyl)amino]ethyl]-1,4,7-triazacyclononane-1,4-diacetic acid) chelating agents were synthesized for potential use in copper 64-PET imaging applications. The bifunctional chelates were comparatively evaluated using transferrin (Tf) as a model targeting vector that binds to the transferrin receptor overexpressed in many different cancer cells. The transferrin conjugates of the NE3TA-based bifunctional chelates were evaluated for radiolabeling with (64)Cu. In vitro stability and cellular uptake of (64)Cu-radiolabeled conjugates were evaluated in human serum and prostate (PC-3) cancer cells, respectively. Among the three NE3TA-Tf conjugates tested, N-NE3TA-Tf was identified as the best conjugate for radiolabeling with (64)Cu. N-NE3TA-Tf rapidly bound to (64)Cu (>98% radiolabeling efficiency, 1min, RT), and (64)Cu-N-NE3TA-Tf remained stable in human serum for 2days and demonstrated high uptake in PC-3 cancer cells. (64)Cu-N-NE3TA-Tf was shown to have rapid blood clearance and increasing tumor uptake in PC-3 tumor bearing mice over a 24h period. This bifunctional chelate presents highly efficient chelation chemistry with (64)Cu under mild condition that can be applied for radiolabeling of various tumor-specific biomolecules with (64)Cu for potential use in PET imaging applications.


Nuclear Medicine and Biology | 2015

Targeted antisense radiotherapy and dose fractionation using a 177Lu-labeled anti-bcl-2 peptide nucleic acid-peptide conjugate

Dijie Liu; Ethan R. Balkin; Fang Jia; Varyanna C. Ruthengael; C. Jeffrey Smith; Michael R. Lewis

INTRODUCTION The overall goal of these studies was to test the hypothesis that simultaneous down-regulation of a tumor survival gene and delivery of internally emitted cytotoxic radiation will be more effective than either treatment modality alone. The objectives were to evaluate the therapeutic efficacy of a (177)Lu-labeled anti-bcl-2-PNA-Tyr(3)-octreotate antisense conjugate in a mouse model bearing human non-Hodgkins lymphoma (NHL) tumor xenografts and to optimize targeted antisense radiotherapy by dose fractionation. METHODS In the initial therapy studies, tumor-bearing mice were given saline, nonradioactive DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate, (177)Lu-DOTA-Tyr(3)-octreotate, (177)Lu-DOTA-PNA-peptide alone, or (177)Lu-DOTA-PNA-peptide followed by a chase dose of nonradioactive PNA-peptide. The MTD of (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate was then determined. Subsequently single dose MTD and four weekly fractionated doses were directly compared, followed by histopathologic evaluation. RESULTS Antisense radiotherapy using 4.44 MBq of the (177)Lu-DOTA-PNA-peptide followed by nonradioactive PNA-peptide was significantly more effective than other low dose treatment regimens. A dose of 18.5 MBq of (177)Lu-DOTA-PNA-peptide was determined to be the approximate maximum tolerated dose (MTD). The median times to progression to a 1cm(3) tumor volume were 32 and 49 days for single dose MTD and fractionated dose (4 × 4.63 MBq) groups, respectively. Histopathology revealed metastases in the single dose groups, but not in the dose fractionation group. CONCLUSIONS Targeted antisense radiotherapy using (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate and DOTA-PNA-peptide conjugate effectively inhibited tumor progression in a mouse model of NHL. Furthermore, a dose fractionation regimen had a significant advantage over a single high dose, in terms of tumor growth inhibition and prevention of metastasis. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Down-regulating bcl-2, an anti-apoptotic proto-oncogene, is a mechanism to reverse chemotherapy resistance or failure in humans with NHL. We have developed a (177)Lu-DOTA-anti-bcl-2-PNA-Tyr(3)-octreotate conjugate for targeted antisense radiotherapy, in which down-regulation of bcl-2 and delivery of cytotoxic radiation occur simultaneously. Our previous studies have shown highly specific inhibition of bcl-2 protein, additive in vitro cytotoxic effects on human lymphoma cells, and favorable biodistribution and dosimetric properties. Lutetium-177 targeted antisense radiotherapy demonstrates a significant advantage over conventional (177)Lu-peptide receptor radionuclide therapy in a mouse model of NHL. Our preclinical studies identified an effective combination of antisense and radionuclide therapy, with the goal of future clinical trials in patients.


Anticancer Research | 2009

In Vivo Imaging of Human Colorectal Cancer Using Radiolabeled Analogs of the Uroguanylin Peptide Hormone

Dijie Liu; Douglas Overbey; Lisa D. Watkinson; Said Daibes-Figueroa; Timothy J. Hoffman; Leonard R. Forte; Wynn A. Volkert; Michael F. Giblin


Journal of Biological Inorganic Chemistry | 2016

Promising bifunctional chelators for copper 64-PET imaging: practical (64)Cu radiolabeling and high in vitro and in vivo complex stability.

Ningjie Wu; Chi Soo Kang; Inseok Sin; Siyuan Ren; Dijie Liu; Varyanna C. Ruthengael; Michael R. Lewis; Hyun-Soon Chong


European Journal of Organic Chemistry | 2014

Synthesis and Evaluation of an Enantiomerically Enriched Bifunctional Chelator for 64Cu-Based Positron Emission Tomography (PET) Imaging

Hyun-Soon Chong; Xiang Sun; Yongliang Zhong; Kamil Bober; Michael R. Lewis; Dijie Liu; Varyanna C. Ruthengael; Inseok Sin; Chi Soo Kang

Collaboration


Dive into the Dijie Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Soo Kang

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun-Soon Chong

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiang Sun

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Inseok Sin

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ningjie Wu

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunwei Chen

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge