Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dijle Kipmen-Korgun is active.

Publication


Featured researches published by Dijle Kipmen-Korgun.


Acta Histochemica | 2012

Immunolocalization of PCNA, Ki67, p27 and p57 in normal and dexamethasone-induced intrauterine growth restriction placental development in rat.

Gozde Unek; Asli Ozmen; Dijle Kipmen-Korgun; Emin Turkay Korgun

Intrauterine growth restriction (IUGR) is a major clinical problem which causes perinatal morbidity and mortality. Although fetuses with IUGR form a heterogeneous group, a major etiological factor is abnormal placentation. Despite the fact that placental development requires the coordinated action of trophoblast proliferation and differentiation, there are few studies on cell cycle regulators, which play the main roles in the coordination of these events. Moreover it is still not determined how mechanisms of coordination of proliferation and differentiation are influenced by dexamethasone-induced IUGR in the placenta. The aim of the study was to investigate the spatial and temporal immunolocalization of proliferating cell nuclear antigen (PCNA), Ki67, p27 and p57 in normal and IUGR placental development in pregnant Wistar rats. The study demonstrated altered expressions of distinct cell cycle proteins and cyclin dependent kinase inhibitors (CKIs) in IUGR placental development compared to control placental development. We found reduced immunostaining of PCNA and Ki67 and increased immunostaining of p27 and p57 in the dexamethasone-induced IUGR placental development compared to control placental development. In conclusion, our data show that the cell populations in the placenta stain for a number of cell cycle related proteins and that these staining patterns change as a function of both gestational age and abnormal placentation.


Food and Chemical Toxicology | 2013

Merit of quinacrine in the decrease of ingested sulfite-induced toxic action in rat brain.

Ceren Kencebay; Narin Derin; Ozlem Ozsoy; Dijle Kipmen-Korgun; Gamze Tanriover; Nihal Ozturk; Goksun Basaranlar; Piraye Yargicoglu-Akkiraz; Berna Sozen; Aysel Agar

We aimed at investigating the effects of sulfite-induced lipid peroxidation and apoptosis mediated by secretory phospholipase A2 (sPLA2) on somatosensory evoked potentials (SEP) alterations in rats. Thirty male albino Wistar rats were randomized into three experimental groups as follows; control (C), sodium metabisulfite treated (S), sodium metabisulfite+quinacrine treated (SQ). Sodium metabisulfite (100 mg/kg/day) was given by gastric gavage for 5 weeks and 10 mg/kg/day quinacrine was applied as a single dose of intraperitoneal injection for the same period. The latencies of SEP components were significantly prolonged in the S group and returned to control levels following quinacrine administration. Plasma-S-sulfonate level was increased in S and SQ groups. TBARS levels in the S group were significantly higher than those detected in controls. Quinacrine significantly decreased brain TBARS levels in the SQ group compared with the S group. Quinacrine treatment did not have an effect on the increased sPLA2 level of the sulfite administered group. Immunohistochemistry showed that sulfite caused an increase in caspase-3 and TUNEL positive cells, restored to control levels via quinacrine administration. This study showed that sPLA2 might play a role in ingested sulfite-induced SEP alterations, oxidative stress, apoptotic cell death and DNA damage in the brain.


Histology and Histopathology | 2014

The PI3K/Akt and MAPK-ERK1/2 pathways are altered in STZ induced diabetic rat placentas.

Asl Ozmen; Gozde Unek; Dijle Kipmen-Korgun; Emin Turkay Korgun

Diabetic pregnancy is associated with complications such as early and late embryonic death, fetal growth disorders, placental abnormalities, and embryonal-placental metabolic disorders. Excessive apoptosis and/or changes of proliferation mechanisms are seen as a major event in the pathogenesis of diabetes-induced embryonic death, placental weight and structural anomalies. Akt and ERK1/2 proteins are important for placental and fetal development associated with cellular proliferation and differentiation mechanisms. The mechanism underlying the placental growth regulatory effects of hyperglycemia have not been elucidated. Moreover, it is still not determined how Akt and ERK1/2 proteins related proliferation and apoptosis mechanisms are influenced by Streptozotocin (STZ) induced diabetic rat placental development. The aim of this study was to investigate the expression levels and spatio-temporal immunolocalizations of Akt, p-Akt, ERK1/2 and p-ERK1/2 proteins in normal and STZ-treated diabetic rat placental development. In order to compose the diabetic group, pregnant females were injected with a single dose of 40 mg/kg STZ intraperitonally seven days before their sacrifice at 12th, 14th, 16th, 18th and 20th day of their gestation. We found that maternal diabetic environment led to a decrease in ERK1/2 and Akt phosphorylation during rat placental development. It could be said that MAPK-ERK1/2 and PI3K/Akt cell signaling pathways are affected from hyperglycemic conditions in rat placentas. In conclusion, hyperglycemia-induced placental and embryonal developmental abnormalities could be associated with reduction of Akt and ERK1/2 phosphorylation.


Annals of Anatomy-anatomischer Anzeiger | 2015

Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta.

Asli Ozmen; Gozde Unek; Dijle Kipmen-Korgun; Busra Cetinkaya; Zeynep Avcil; Emin Turkay Korgun

During pregnancy, glucocorticoids (GCs) are used for fetal lung maturation in women at risk of preterm labor. Exogenous GCs do not have exclusively beneficial effects and repeated use of GCs remains controversial. It has been observed that GC exposed rats have smaller placentas and intrauterine growth retarded fetuses. In this study, we questioned whether or not glucocorticoids effect placental angiogenesis mechanisms. One of the most important signaling pathways among several downstream of VEGFR-2 is PI3K/Akt which subsequently activates the mammalian target of rapamycin. Therefore, we hypothesized that overexposure to GCs may adversely affect placental angiogenesis mechanisms by regulating pro-angiogenic factors and their receptors via Akt/mTOR pathway. According to our results Dexamethasone, a synthetic glucocorticoid, administration led to a decrease in VEGF, PIGF expression during pregnancy. VEGFR2 expression was first decreased at gestational day 14 and afterwards increased at gestational days 16, 18 and 20 in rat placentas. These results are in accordance with the reduced phosphorylation of Akt, 4EBP1 and p70S6K. Dexamethasone injection also resulted in a reduction of VEGF, VEGFR1, and VEGFR2 mRNA expression at gestational days 14 and 20, but PIGF mRNA expression was not altered. Growth retarded fetuses seen in Dexamethasone treated pregnancies, may be a result of altered angiogenic factor expression of the placenta mediated via altered mTOR pathway signaling.


Cell Biochemistry and Function | 2012

Triamcinolone up‐regulates GLUT 1 and GLUT 3 expression in cultured human placental endothelial cells

Dijle Kipmen-Korgun; Asli Ozmen; Gozde Unek; Mehmet Simsek; Ramazan Demir; Emin Turkay Korgun

The placenta is a glucocorticoid target organ, and glucocorticoids (GCs) are essential for the development and maturation of fetal organs. They are widely used for treatment of a variety of diseases during pregnancy. In various tissues, GCs have regulated by glucose transport systems; however, their effects on glucose transporters in the human placental endothelial cells (HPECs) are unknown.


Histochemistry and Cell Biology | 2011

Mapping of CIP/KIP inhibitors, G1 cyclins D1, D3, E and p53 proteins in the rat term placenta

Emin Turkay Korgun; Gozde Unek; Emilio Herrera; Carolyn J.P. Jones; Christian Wadsack; Dijle Kipmen-Korgun; Gernot Desoye

As cell cycle regulation is fundamental to the normal growth and development of the placenta, the aim of the present study was to determine the immunolocalizations of cell cycle related proteins, which have key roles in proliferation, differentiation and apoptosis during the development of the rat placenta. Here immunohistochemistry has been used to localize G1 cyclins (D1, D3, E), which are major determinants of proliferation, CIP/KIP inhibitors (p21, p27, p57), p53 as a master regulator and proliferating cell nuclear antigen in all cell types of the rat term placenta. The proportion of each cell type immunolabeled was counted. Cyclin D1 and cyclin D3 were present mostly in cells of the fetal aspect of the placenta, whereas the G1/S cyclin E was present only in the spongio- and labyrinthine trophoblast populations. Among the CIP/KIP inhibitors, p21 was present only in cells of the fetal aspect whereas p27 and p57 were found in all cell types studied. p53 was only found in a small proportion of cells with no co-localization of p53 and p21. The data suggest that the cells of the fetal side of the rat placenta still have some proliferation potential which is kept in check by expression of the CIP/KIP cell cycle inhibitors, whereas cells of the maternal aspect have lost this potential. Apoptosis is only marginal in the term rat placenta. In conclusion, proliferation and apoptosis in rat placental cells appears controlled mostly by the CIP/KIP inhibitors in late pregnancy.


Folia Histochemica Et Cytobiologica | 2011

Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat.

Emin Turkay Korgun; Nuray Acar; Leyla Sati; Dijle Kipmen-Korgun; Asl Ozen; Gozde Unek; Ismail Ustunel; Ramazan Demir

In various tissues, glucocorticoids (GCs) are known to downregulate glucose transport systems; however, their effects on glucose transporters (GLUTs) in the placenta of a diabetic rat are unknown. Glucocorticoid hormone action within the cell is regulated by the glucocorticoid receptor (GR). Thus, this study was designed to investigate the relationship between GR and glucose transporter expression in the placenta of the diabetic rat. Our immunohistochemical results indicated that GR and glucose transporter protein 1 (GLUT 1) are expressed ubiquitously in the trophoblast and endothelial cells of the labyrinthine zone, where maternal fetal transport takes place in the rat placenta. Expression of GR in the junctional zone of the rat placenta was detected in giant cells, and in some spongiotrophoblast cells, but not in the glycogen cells. GLUT 1 was present, especially in glycogen cells during early pregnancy, and in the spongiotrophoblast cells of the junctional zone during late pregnancy. Amounts of GR and GLUT 1 protein were increased towards the end of gestation both in the control and the diabetic placenta. However, at days 17 and 19 of gestation, only the placental GR protein was significantly increased in the streptozotocin-induced diabetic rats compared to control rats. Diabetes led to a significant decrease in placental weight at gestation day 15. In contrast, at gestational days 17 and 21, the weights of the diabetic placenta were significantly increased as compared with the controls. Moreover, diabetes induced fetus intrauterine growth retardation at gestational days 13, 17 and 21. In conclusion, the localization pattern of GR and GLUT 1 proteins in the same cell types led us to believe that there might be a relationship between GR and GLUT 1 expressions at the cellular level. GLUT 1 does not play a pivotal role in diabetic pregnancies. However, placental growth abnormalities during diabetic pregnancy may be related to the amount of GR.


Biotechnic & Histochemistry | 2016

Glucocorticoid effects on angiogenesis are associated with mTOR pathway activity

Asli Ozmen; Gozde Unek; Dijle Kipmen-Korgun; Inanc Mendilcioglu; Cem Yaşar Sanhal; Mehmet Sakinci; Emin Turkay Korgun

Glucocorticoids (GC) often are administered during pregnancy, but despite their widespread use in clinical practice, it remains uncertain how GC exposure affects pro-angiogenic factors and their receptors. We investigated the effects of GC on vascular endothelial growth factor (VEGF), placental growth factor (PIGF), vascular endothelial growth factor receptor 1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2) protein and mRNA expressions and investigated the possible association of GC with the Akt/mTOR pathway. We incubated human umbilical vein endothelial cells (HUVECs) with a synthetic GC, triamcinolone acetonide (TA). TA administration caused decreased cellular and soluble VEGF and VEGFR1 protein expressions and increased soluble VEGFR2 expression. VEGF, VEGFR1 and VEGFR2 mRNA expressions were altered in a time and dose dependent manner. PIGF protein expression was unaffected by TA treatment, but PIGF mRNA expression decreased in a dose dependent manner after incubation for 48 and 72 h. Phospho-mTOR and phospho-Akt expressions were unaffected. Phospho-p70S6K and phospho-4EBP1 protein expressions and the vascular network forming capacity of HUVECs decreased in a dose dependent manner. We found that GC exert detrimental effects on angiogenesis by altering cellular and soluble angiogenic protein and mRNA levels, and vascular network forming capacities by the Akt/mTOR pathway.


Acta Histochemica | 2015

Determination of PCNA, cyclin D3, p27, p57 and apoptosis rate in normal and dexamethasone-induced intrauterine growth restricted rat placentas

Hakan Er; Nuray Acar; Dijle Kipmen-Korgun; Ciler Celik-Ozenci; Ismail Ustunel; Mevlüt Asar; Emin Turkay Korgun

Intrauterine growth restriction (IUGR) is a major clinical problem, which causes perinatal morbidity and mortality. One of the reasons for IUGR is abnormal placentation. In rats, fetal-placental exposure to maternally administered glucocorticoids decreases birth weight and placental weight. Proper placental development depends on the proliferation and differentiation of trophoblasts. Our knowledge about the mitotic regulators that play key roles in synchronizing these events is limited. Also the mechanisms underlying the placental growth inhibitory effects of glucocorticoids have not been elucidated. The aim of this study was to investigate the immunolocalization, mRNA and protein levels of proliferating cell nuclear antigen (PCNA), cyclin D3, p27 and p57 in normal and dexamethasone-induced IUGR Wistar rat placentas by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and Western blot. We also compared apoptotic cell numbers at the light microscopic level via terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) and transmission electron microscopy. Glucocorticoid levels were higher in IUGR rats than in control rats after 60 and 120min of injection. We showed reduced gene and protein expressions of PCNA and cyclin D3 and increased expressions of p27 and p57 in IUGR placentas compared to control placentas. Apoptotic cell number was higher in the placentas of the IUGR group. In brief we found that maternal dexamethasone treatment led to a shift from cell proliferation to apoptosis in IUGR placentas. Dexamethasone induced placental and embryonal abnormalities which could be associated with reduced expressions of PCNA and cyclin D3, increased expressions of p27 and p57 and increased rate of apoptosis in IUGR placentas.


Journal of Molecular Histology | 2011

The expression of Akt and ERK1/2 proteins decreased in dexamethasone-induced intrauterine growth restricted rat placental development

Asli Ozmen; Gozde Unek; Dijle Kipmen-Korgun; Emin Turkay Korgun

Collaboration


Dive into the Dijle Kipmen-Korgun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge