Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dillon D. Fong is active.

Publication


Featured researches published by Dillon D. Fong.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain

C. W. Bark; David Felker; Y. Wang; Y. Zhang; Ho Won Jang; C. M. Folkman; Jeongpil Park; Seung-Hyub Baek; Hua Zhou; Dillon D. Fong; Xiaoqing Pan; Evgeny Y. Tsymbal; M. S. Rzchowski; Chang-Beom Eom

Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these unique systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single-crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile-strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. The polarization is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This behavior both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface.


Nature Materials | 2013

Reversible redox reactions in an epitaxially stabilized SrCoO x oxygen sponge

Hyoungjeen Jeen; Woo Seok Choi; Michael D. Biegalski; C. M. Folkman; I-Cheng Tung; Dillon D. Fong; J. W. Freeland; Dongwon Shin; Hiromichi Ohta; Matthew F. Chisholm; Ho Nyung Lee

Fast, reversible redox reactions in solids at low temperatures without thermomechanical degradation are a promising strategy for enhancing the overall performance and lifetime of many energy materials and devices. However, the robust nature of the cations oxidation state and the high thermodynamic barrier have hindered the realization of fast catalysis and bulk diffusion at low temperatures. Here, we report a significant lowering of the redox temperature by epitaxial stabilization of strontium cobaltites (SrCoO(x)) grown directly as one of two distinct crystalline phases, either the perovskite SrCoO(3-δ) or the brownmillerite SrCoO(2.5). Importantly, these two phases can be reversibly switched at a remarkably reduced temperature (200-300 °C) in a considerably short time (< 1 min) without destroying the parent framework. The fast, low-temperature redox activity in SrCoO(3-δ) is attributed to a small Gibbs free-energy difference between two topotatic phases. Our findings thus provide useful information for developing highly sensitive electrochemical sensors and low-temperature cathode materials.


Science | 2011

Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations

Ho Won Jang; David Felker; C. W. Bark; Y. Wang; Manish K. Niranjan; C. T. Nelson; Y. Zhang; Dong Su; C. M. Folkman; Seung-Hyub Baek; S. Lee; Karolina Janicka; Yimei Zhu; Xiaoqing Pan; Dillon D. Fong; Evgeny Y. Tsymbal; M. S. Rzchowski; Chang-Beom Eom

The strength of electronic correlations dictates the transport properties of oxide interfaces. The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [(R is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO3) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local spectroscopic and theoretical results indicate that the interfacial conductivity is dependent on electronic correlations that decay spatially into the SrTiO3 matrix. Such correlation effects can lead to new functionalities in designed heterostructures.


Applied Physics Letters | 2008

In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure

Tim T. Fister; Dillon D. Fong; J. A. Eastman; P. M. Baldo; M. J. Highland; P. H. Fuoss; K. R. Balasubramaniam; Joanna C. Meador; Paul A. Salvador

Using in situ synchrotron measurements of total reflection x-ray fluorescence, we find evidence of strontium surface segregation in (001)-oriented La0.7Sr0.3MnO3 thin films over a wide range of temperatures (25–900 °C) and oxygen partial pressures (pO2=0.15–150 Torr). The strontium surface concentration is observed to increase with decreasing pO2, suggesting that the surface oxygen vacancy concentration plays a significant role in controlling the degree of segregation. Interestingly, the enthalpy of segregation becomes less exothermic with increasing pO2, varying from −9.5 to −2.0 kJ/mol. In contrast, the La0.7Sr0.3MnO3 film thickness and epitaxial strain state have little impact on segregation behavior.


Nature Communications | 2014

Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution

Seo Hyoung Chang; Nemanja Danilovic; Kee-Chul Chang; Ram Subbaraman; A.P. Paulikas; Dillon D. Fong; M. J. Highland; P. M. Baldo; Vojislav R. Stamenkovic; J. W. Freeland; J. A. Eastman; Nenad M. Markovic

In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru(4+) to unstable Ru(n>4+). This ordered(Ru(4+))-to-disordered(Ru(n>4+)) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.


Nature | 2016

Strongly correlated perovskite fuel cells

You Zhou; Xiaofei Guan; Hua Zhou; Koushik Ramadoss; Suhare Adam; Huajun Liu; Sungsik Lee; Jian Shi; Masaru Tsuchiya; Dillon D. Fong; Shriram Ramanathan

Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.


Nature Materials | 2014

Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy

J. H. Lee; Guangfu Luo; I-Cheng Tung; Siliang Chang; Z. Luo; M. Malshe; Milind Gadre; Anand Bhattacharya; Serge M. Nakhmanson; J. A. Eastman; H. Hong; J. Jellinek; Dane Morgan; Dillon D. Fong; J. W. Freeland

The A(n+1)B(n)O(3n+1) Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden-Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3Ni2O7.


ACS Nano | 2012

Beyond condensed matter physics on the nanoscale: the role of ionic and electrochemical phenomena in the physical functionalities of oxide materials.

Sergei V. Kalinin; Albina Y. Borisevich; Dillon D. Fong

Novel physical functionality enabled by nanoscale control of materials has been the target of intense scientific exploration and interest for the last two decades, leading directly to the explosive growth of nanoscience and nanotechnology. However, this transition to nanometer scales also blurs the boundary between classical physical and electrochemical phenomena, due to smaller transport lengths, larger chemical and electrostatic potential gradients, and higher surface/volume ratios. While well-recognized for many decades in areas such as ferroelectricity, these phenomena remained largely outside the realm of condensed matter physics studies. Here, we offer a perspective on the role of electrochemical phenomena in the nanoscale physics of correlated oxides and summarize the challenges for local characterization of these behaviors.


Applied Physics Letters | 2008

Imaging and alignment of nanoscale 180° stripe domains in ferroelectric thin films

Carol Thompson; Dillon D. Fong; Rui Wang; F. Jiang; S. K. Streiffer; K. Latifi; J. A. Eastman; P. H. Fuoss; G. B. Stephenson

Nanometer-period ferroelectric 180° stripe domains are observed in epitaxial PbTiO3 films using atomic force microscopy. Stripe domains can be aligned with surface step edges or in preferred crystallographic directions. A stripe alignment map as a function of temperature and film thickness is determined using synchrotron x-ray scattering. Pinning by step edges permits control of stripe domain morphology, as demonstrated by a film grown on a vicinal surface.


Advanced Materials | 2012

Atomic Layer Engineering of Perovskite Oxides for Chemically Sharp Heterointerfaces

Woo Seok Choi; Christopher M. Rouleau; Sung Seok A. Seo; Zhenlin Luo; Hua Zhou; Timothy T. Fister; J. A. Eastman; P. H. Fuoss; Dillon D. Fong; Jonathan Z. Tischler; Gyula Eres; Matthew F. Chisholm; Ho Nyung Lee

Atomic layer engineering enables fabrication of a chemically sharp oxide heterointerface. The interface formation and strain evolution during the initial growth of LaAlO(3) /SrTiO(3) heterostructures by pulsed laser deposition are investigated in search of a means for controlling the atomic-sharpness of the interface. This study shows that inserting a monolayer of LaAlO(3) grown at high oxygen pressure dramatically enhances interface abruptness.

Collaboration


Dive into the Dillon D. Fong's collaboration.

Top Co-Authors

Avatar

J. A. Eastman

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. H. Fuoss

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. K. Streiffer

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carol Thompson

Northern Illinois University

View shared research outputs
Top Co-Authors

Avatar

Timothy T. Fister

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. B. Stephenson

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. J. Highland

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hua Zhou

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hawoong Hong

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge