Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimas Echeverria is active.

Publication


Featured researches published by Dimas Echeverria.


Molecular Therapy | 2016

Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing.

Marie-Cecile Didiot; Lauren M Hall; Andrew H. Coles; Reka A. Haraszti; Bruno M.D.C. Godinho; Kathryn Chase; Ellen Sapp; Socheata Ly; Julia F. Alterman; Matthew R. Hassler; Dimas Echeverria; Lakshmi Raj; David V. Morrissey; Marian DiFiglia; Neil Aronin; Anastasia Khvorova

Delivery represents a significant barrier to the clinical advancement of oligonucleotide therapeutics for the treatment of neurological disorders, such as Huntingtons disease. Small, endogenous vesicles known as exosomes have the potential to act as oligonucleotide delivery vehicles, but robust and scalable methods for loading RNA therapeutic cargo into exosomes are lacking. Here, we show that hydrophobically modified small interfering RNAs (hsiRNAs) efficiently load into exosomes upon co-incubation, without altering vesicle size distribution or integrity. Exosomes loaded with hsiRNAs targeting Huntingtin mRNA were efficiently internalized by mouse primary cortical neurons and promoted dose-dependent silencing of Huntingtin mRNA and protein. Unilateral infusion of hsiRNA-loaded exosomes, but not hsiRNAs alone, into mouse striatum resulted in bilateral oligonucleotide distribution and statistically significant bilateral silencing of up to 35% of Huntingtin mRNA. The broad distribution and efficacy of hsiRNA-loaded exosomes delivered to brain is expected to advance the development of therapies for the treatment of Huntingtons disease and other neurodegenerative disorders.


Molecular therapy. Nucleic acids | 2016

Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

Mehran Nikan; Maire F. Osborn; Andrew H. Coles; Bruno M.D.C. Godinho; Lauren M Hall; Reka A. Haraszti; Matthew R. Hassler; Dimas Echeverria; Neil Aronin; Anastasia Khvorova

The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6-60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders.The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders.


Nucleic Acids Research | 2017

5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo

Reka A. Haraszti; Loic Roux; Andrew H. Coles; Anton A. Turanov; Julia F. Alterman; Dimas Echeverria; Bruno M.D.C. Godinho; Neil Aronin; Anastasia Khvorova

Abstract 5΄-Vinylphosphonate modification of siRNAs protects them from phosphatases, and improves silencing activity. Here, we show that 5΄-vinylphosphonate confers novel properties to siRNAs. Specifically, 5΄-vinylphosphonate (i) increases siRNA accumulation in tissues, (ii) extends duration of silencing in multiple organs and (iii) protects siRNAs from 5΄-to-3΄ exonucleases. Delivery of conjugated siRNAs requires extensive chemical modifications to achieve stability in vivo. Because chemically modified siRNAs are poor substrates for phosphorylation by kinases, and 5΄-phosphate is required for loading into RNA-induced silencing complex, the synthetic addition of a 5΄-phosphate on a fully modified siRNA guide strand is expected to be beneficial. Here, we show that synthetic phosphorylation of fully modified cholesterol-conjugated siRNAs increases their potency and efficacy in vitro, but when delivered systemically to mice, the 5΄-phosphate is removed within 2 hours. The 5΄-phosphate mimic 5΄-(E)-vinylphosphonate stabilizes the 5΄ end of the guide strand by protecting it from phosphatases and 5΄-to-3΄ exonucleases. The improved stability increases guide strand accumulation and retention in tissues, which significantly enhances the efficacy of cholesterol-conjugated siRNAs and the duration of silencing in vivo. Moreover, we show that 5΄-(E)-vinylphosphonate stabilizes 5΄ phosphate, thereby enabling systemic delivery to and silencing in kidney and heart.


Bioconjugate Chemistry | 2017

Synthesis and Evaluation of Parenchymal Retention and Efficacy of a Metabolically Stable O-Phosphocholine-N-docosahexaenoyl-l-serine siRNA Conjugate in Mouse Brain.

Mehran Nikan; Maire F. Osborn; Andrew H. Coles; Annabelle Biscans; Bruno M.D.C. Godinho; Reka A. Haraszti; Ellen Sapp; Dimas Echeverria; Marian DiFiglia; Neil Aronin; Anastasia Khvorova

Ligand-conjugated siRNAs have the potential to achieve targeted delivery and efficient silencing in neurons following local administration in the central nervous system (CNS). We recently described the activity and safety profile of a docosahexaenoic acid (DHA)-conjugated, hydrophobic siRNA (DHA-hsiRNA) targeting Huntingtin (Htt) mRNA in mouse brain. Here, we report the synthesis of an amide-modified, phosphocholine-containing DHA-hsiRNA conjugate (PC-DHA-hsiRNA), which closely resembles the endogenously esterified biological structure of DHA. We hypothesized that this modification may enhance neuronal delivery in vivo. We demonstrate that PC-DHA-hsiRNA silences Htt in mouse primary cortical neurons and astrocytes. After intrastriatal delivery, Htt-targeting PC-DHA-hsiRNA induces ∼80% mRNA silencing and 71% protein silencing after 1 week. However, PC-DHA-hsiRNA did not substantially outperform DHA-hsiRNA under the conditions tested. Moreover, at the highest locally administered dose (4 nmol, 50 μg), we observe evidence of PC-DHA-hsiRNA-mediated reactive astrogliosis. Lipophilic ligand conjugation enables siRNA delivery to neural tissues, but rational design of functional, nontoxic siRNA conjugates for CNS delivery remains challenging.


Nucleic Acids Research | 2018

Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo

Matthew R. Hassler; Anton A. Turanov; Julia F. Alterman; Reka A. Haraszti; Andrew H. Coles; Maire F. Osborn; Dimas Echeverria; Mehran Nikan; William Salomon; Loic Roux; Bruno M.D.C. Godinho; Sarah M. Davis; David V. Morrissey; Phillip D. Zamore; S. Ananth Karumanchi; Melissa J. Moore; Neil Aronin; Anastasia Khvorova

Abstract Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various tissues, independently of the nature of the conjugate or siRNA sequence, and support productive mRNA silencing. Thus, fully chemically stabilized siRNAs may provide a better platform to identify novel moieties (peptides, aptamers, small molecules) for targeted RNAi delivery.


bioRxiv | 2018

Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways

Maire F. Osborn; Andrew H. Coles; Annabelle Biscans; Reka A. Haraszti; Loic Roux; Sarah M. Davis; Socheata Ly; Dimas Echeverria; Matthew R. Hassler; Bruno M.D.C. Godinho; Mehran Nikan; Anastasia Khvorova

Efficient delivery of therapeutic RNA is the fundamental obstacle preventing its clinical utility. Lipid conjugation improves plasma half-life, tissue accumulation, and cellular uptake of small interfering RNAs (siRNAs). However, the impact of conjugate structure and hydrophobicity on siRNA pharmacokinetics is unclear, impeding the design of clinically relevant lipid-siRNAs. Using a panel of biologically-occurring lipids, we show that lipid conjugation modulates siRNA hydrophobicity and governs spontaneous partitioning into distinct plasma lipoprotein classes in vivo. Lipoprotein binding influences siRNA distribution by delaying renal excretion and promoting uptake into lipoprotein receptor-enriched tissues. Lipid-siRNAs elicit mRNA silencing without causing toxicity in a tissue-specific manner. Lipid-siRNA internalization occurs independently of lipoprotein endocytosis, and is mediated by siRNA phosphorothioate modifications. Although biomimetic lipoprotein nanoparticles have been considered for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.


Nature Communications | 2018

Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing.

Aamir Mir; Julia F. Alterman; Matthew R. Hassler; Alexandre J. Debacker; Edward Hudgens; Dimas Echeverria; Michael H. Brodsky; Anastasia Khvorova; Jonathan K. Watts; Erik J. Sontheimer

RNA-based drugs depend on chemical modifications to increase potency and to decrease immunogenicity in vivo. Chemical modification will likely improve the guide RNAs involved in CRISPR-Cas9-based therapeutics as well. Cas9 orthologs are RNA-guided microbial effectors that cleave DNA. Here, we explore chemical modifications at all positions of the crRNA guide and tracrRNA cofactor. We identify several heavily modified versions of crRNA and tracrRNA that are more potent than their unmodified counterparts. In addition, we describe fully chemically modified crRNAs and tracrRNAs (containing no 2′-OH groups) that are functional in human cells. These designs will contribute to Cas9-based therapeutics since heavily modified RNAs tend to be more stable in vivo (thus increasing potency). We anticipate that our designs will improve the use of Cas9 via RNP and mRNA delivery for in vivo and ex vivo purposes.Resistance of gRNA to ubiquitous ribonucleases is required for CRISPR-Cas9-based therapeutics. Here, the authors explore chemical modifications at all positions of the crRNA guide and tracrRNA cofactor, and identify modified versions that are more potent and stable than their unmodified counterparts in editing human cells.


Molecular Therapy | 2018

Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles

Annabelle Biscans; Reka A. Haraszti; Dimas Echeverria; Rachael Miller; Marie-Cecile Didiot; Mehran Nikan; Loic Roux; Neil Aronin; Anastasia Khvorova

Small extracellular vesicles (sEVs) show promise as natural nano-devices for delivery of therapeutic RNA, but efficient loading of therapeutic RNA remains a challenge. We have recently shown that the attachment of cholesterol to small interfering RNAs (siRNAs) enables efficient and productive loading into sEVs. Here, we systematically explore the ability of lipid conjugates-fatty acids, sterols, and vitamins-to load siRNAs into sEVs and support gene silencing in primary neurons. Hydrophobicity of the conjugated siRNAs defined loading efficiency and the silencing activity of siRNA-sEVs complexes. Vitamin-E-conjugated siRNA supported the best loading into sEVs and productive RNA delivery to neurons.


Molecular Cancer Therapeutics | 2018

Efficient gene silencing in brain tumors with hydrophobically modified siRNAs

Maire F. Osborn; Andrew H. Coles; Diane Golebiowski; Dimas Echeverria; Michael P. Moazami; Jonathan K. Watts; Miguel Sena-Esteves; Anastasia Khvorova

Glioblastoma (GBM) is the most common and lethal form of primary brain tumor with dismal median and 2-year survivals of 14.5 months and 18%, respectively. The paucity of new therapeutic agents stems from the complex biology of a highly adaptable tumor that uses multiple survival and proliferation mechanisms to circumvent current treatment approaches. Here, we investigated the potency of a new generation of siRNAs to silence gene expression in orthotopic brain tumors generated by transplantation of human glioma stem-like cells in athymic nude mice. We demonstrate that cholesterol-conjugated, nuclease-resistant siRNAs (Chol-hsiRNAs) decrease mRNA and silence luciferase expression by 90% in vitro in GBM neurospheres. Furthermore, Chol-hsiRNAs distribute broadly in brain tumors after a single intratumoral injection, achieving sustained and potent (>45% mRNA and >90% protein) tumor-specific gene silencing. This readily available platform is sequence-independent and can be adapted to target one or more candidate GBM driver genes, providing a straightforward means of modulating GBM biology in vivo. Mol Cancer Ther; 17(6); 1251–8. ©2018 AACR.


Bioconjugate Chemistry | 2018

Novel Cluster and Monomer-Based GalNAc Structures Induce Effective Uptake of siRNAs in Vitro and in Vivo

Vivek Sharma; Maire F. Osborn; Matthew R. Hassler; Dimas Echeverria; Socheata Ly; Egor A. Ulashchik; Yury V. Martynenko-Makaev; Vadim V. Shmanai; Timofei S. Zatsepin; Anastasia Khvorova; Jonathan K. Watts

GalNAc conjugation is emerging as a dominant strategy for delivery of therapeutic oligonucleotides to hepatocytes. The structure and valency of the GalNAc ligand contributes to the potency of the conjugates. Here we present a panel of multivalent GalNAc variants using two different synthetic strategies. Specifically, we present a novel conjugate based on a support-bound trivalent GalNAc cluster, and four others using a GalNAc phosphoramidite monomer that was readily assembled into tri- or tetravalent designs during solid phase oligonucleotide synthesis. We compared these compounds to a clinically used trivalent GalNAc cluster both in vitro and in vivo. In vitro, cluster-based and phosphoramidite-based scaffolds show a similar rate of internalization in primary hepatocytes, with membrane binding observed as early as 5 min. All tested compounds provided potent, dose-dependent silencing, with 2-4% of injected dose recoverable from liver after 1 week. The two preassembled trivalent GalNAc clusters showed higher tissue accumulation and gene silencing relative to di-, tri-, or tetravalent GalNAc conjugates assembled via phosphoramidite chemistry.

Collaboration


Dive into the Dimas Echeverria's collaboration.

Top Co-Authors

Avatar

Anastasia Khvorova

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Andrew H. Coles

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Neil Aronin

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Reka A. Haraszti

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Bruno M.D.C. Godinho

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Julia F. Alterman

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Matthew R. Hassler

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Maire F. Osborn

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Mehran Nikan

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Annabelle Biscans

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge