Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitar Douchkov is active.

Publication


Featured researches published by Dimitar Douchkov.


The Plant Cell | 2010

HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis

Daniela Nowara; Christophe Lacomme; Jane Shaw; Christopher J. Ridout; Dimitar Douchkov; Götz Hensel; Jochen Kumlehn; Patrick Schweizer

This work examines the effects of RNA interference constructs expressed in host cells on target RNAs in Blumeria graminis, an obligate biotrophic fungal pathogen of barley, and finds that RNAs in the host can affect pathogen transcript levels and pathogen development, thereby providing both a useful research tool and a potentially important means for engineering plant disease resistance. Powdery mildew fungi are obligate biotrophic pathogens that only grow on living hosts and cause damage in thousands of plant species. Despite their agronomical importance, little direct functional evidence for genes of pathogenicity and virulence is currently available because mutagenesis and transformation protocols are lacking. Here, we show that the accumulation in barley (Hordeum vulgare) and wheat (Triticum aestivum) of double-stranded or antisense RNA targeting fungal transcripts affects the development of the powdery mildew fungus Blumeria graminis. Proof of concept for host-induced gene silencing was obtained by silencing the effector gene Avra10, which resulted in reduced fungal development in the absence, but not in the presence, of the matching resistance gene Mla10. The fungus could be rescued from the silencing of Avra10 by the transient expression of a synthetic gene that was resistant to RNA interference (RNAi) due to silent point mutations. The results suggest traffic of RNA molecules from host plants into B. graminis and may lead to an RNAi-based crop protection strategy against fungal pathogens.


Molecular Plant-microbe Interactions | 2005

A High-Throughput Gene-Silencing System for the Functional Assessment of Defense-Related Genes in Barley Epidermal Cells

Dimitar Douchkov; Daniela Nowara; Uwe Zierold; Patrick Schweizer

Large-scale gene silencing by RNA interference (RNAi) offers the possibility to address gene function in eukaryotic organisms at a depth unprecedented until recently. Although genome-wide RNAi approaches are being carried out in organisms like Caenorhabditis elegans, Drosophila spp. or human after the corresponding tools had been developed, knock-down of only single or a few genes by RNAi has been reported in plants thus far. Here, we present a method for high-throughput, transient-induced gene silencing (TIGS) by RNAi in barley epidermal cells that is based on biolistic transgene delivery. This method will be useful to address gene function of shoot epidermis resulting in cell-autonomous phenotypes such as resistance or susceptibility to the powdery-mildew fungus Blumeria graminis f. sp. hordei. Gene function in epidermal cell elongation, stomata regulation, or UV resistance might be addressed as well. Libraries of RNAi constructs can be built up by a new, cost-efficient method that combines highly efficient ligation and recombination by the Gateway cloning system. This method allows cloning of any blunt-ended DNA fragment without the need of adaptor sequences. The final RNAi destination vector was found to direct highly efficient RNAi, as reflected by complete knock-down of a cotransformed green fluorescent protein reporter gene as well as by complete phenolcopy of the recessive loss-of-function mlo resistance gene. By using this method, a role of the t-SNARE protein HvSNAP34 in three types of durable, race-nonspecific resistance was observed.


Plant Physiology | 2007

A Set of Modular Binary Vectors for Transformation of Cereals

Axel Himmelbach; Uwe Zierold; Götz Hensel; Jan Riechen; Dimitar Douchkov; Patrick Schweizer; Jochen Kumlehn

Genetic transformation of crop plants offers the possibility of testing hypotheses about the function of individual genes as well as the exploitation of transgenes for targeted trait improvement. However, in most cereals, this option has long been compromised by tedious and low-efficiency transformation protocols, as well as by the lack of versatile vector systems. After having adopted and further improved the protocols for Agrobacterium-mediated stable transformation of barley (Hordeum vulgare) and wheat (Triticum aestivum), we now present a versatile set of binary vectors for transgene overexpression, as well as for gene silencing by double-stranded RNA interference. The vector set is offered with a series of functionally validated promoters and allows for rapid integration of the desired genes or gene fragments by GATEWAY-based recombination. Additional in-built flexibility lies in the choice of plant selectable markers, cassette orientation, and simple integration of further promoters to drive specific expression of genes of interest. Functionality of the cereal vector set has been demonstrated by transient as well as stable transformation experiments for transgene overexpression, as well as for targeted gene silencing in barley.


Planta | 2007

Iron assimilation and transcription factor controlled synthesis of riboflavin in plants

A. Vorwieger; C. Gryczka; Andreas Czihal; Dimitar Douchkov; Jens Tiedemann; Hans-Peter Mock; Marc Jakoby; Bernd Weisshaar; I. Saalbach; Helmut Bäumlein

Iron homeostasis is vital for many cellular processes and requires a precise regulation. Several iron efficient plants respond to iron starvation with the excretion of riboflavin and other flavins. Basic helix–loop–helix transcription factors (TF) are involved in the regulation of many developmental processes, including iron assimilation. Here we describe the isolation and characterisation of two Arabidopsis bHLH TF genes, which are strongly induced under iron starvation. Their heterologous ectopic expression causes constitutive, iron starvation independent excretion of riboflavin. The results show that both bHLH TFs represent an essential component of the regulatory pathway connecting iron deficiency perception and riboflavin excretion and might act as integrators of various stress reactions.


Molecular Plant Pathology | 2013

The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus

Maya Ostertag; Johanna Stammler; Dimitar Douchkov; Ruth Eichmann; Ralph Hückelhoven

Membrane trafficking is vital to plant development and adaptation to the environment. It is suggested that post-Golgi vesicles and multivesicular bodies are essential for plant defence against directly penetrating fungal parasites at the cell wall. However, the actual plant proteins involved in membrane transport for defence are largely unidentified. We applied a candidate gene approach and single cell transient-induced gene silencing for the identification of membrane trafficking proteins of barley involved in the response to the fungal pathogen Blumeria graminis f.sp. hordei. This revealed potential components of vesicle tethering complexes [putative exocyst subunit HvEXO70F-like and subunits of the conserved oligomeric Golgi (COG) complex] and Golgi membrane trafficking (COPIγ coatomer and HvYPT1-like RAB GTPase) as essential for resistance to fungal penetration into the host cell.


Journal of Plant Physiology | 2011

Transgene expression systems in the Triticeae cereals

Götz Hensel; Axel Himmelbach; Wanxin Chen; Dimitar Douchkov; Jochen Kumlehn

The control of transgene expression is vital both for the elucidation of gene function and for the engineering of transgenic crops. Given the dominance of the Triticeae cereals in the agricultural economy of the temperate world, the development of well-performing transgene expression systems of known functionality is of primary importance. Transgenes can be expressed either transiently or stably. Transient expression systems based on direct or virus-mediated gene transfer are particularly useful in situations where the need is to rapidly screen large numbers of genes. However, an unequivocal understanding of gene function generally requires that a transgene functions throughout the plants life and is transmitted through the sexual cycle, since this alone allows its effect to be decoupled from the plants response to the generally stressful gene transfer event. Temporal, spatial and quantitative control of a transgenes expression depends on its regulatory environment, which includes both its promoter and certain associated untranslated region sequences. While many transgenic approaches aim to manipulate plant phenotype via ectopic gene expression, a transgene sequence can be also configured to down-regulate the expression of its endogenous counterpart, a strategy which exploits the natural gene silencing machinery of plants. In this review, current technical opportunities for controlling transgene expression in the Triticeae species are described. Apart from protocols for transient and stable gene transfer, the choice of promoters and other untranslated regulatory elements, we also consider signal peptides, as they too govern the abundance and particularly the sub-cellular localization of transgene products.


International Symposium on Iron Nutrition and Interactions in Plants | 2002

Nicotianamine synthase: Gene isolation, gene transfer and application for the manipulation of plant iron assimilation

Dimitar Douchkov; Alexandra Herbik; G. Koch; Hans-Peter Mock; Michael Melzer; Udo W. Stephan; Helmut Bäumlein

Basic cellular processes such as electron transport in photosynthesis and respiration require the precise control of iron homeostasis. To mobilise iron, plants have evolved at least two different strategies. The non-proteinogenic amino acid nicotianamine is an essential component of both pathways.We briefly review the characterisation of the nicotianamine synthase as a member of a novel class of enzymes, the cloning of the corresponding gene coding sequences of barley, Arabidopsis and tomato as well as the molecular basis of the chloronerva mutant exhibiting severe defects in the regulation of iron metabolism.Further, we report on current experiments aiming to the application of various NAS-genes to manipulate iron assimilation in model and crop plants using transgenic sense and antisense approaches.


Genome Biology | 2014

Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi

Dimitar Douchkov; Stefanie Lück; Annika Johrde; Daniela Nowara; Axel Himmelbach; Jeyaraman Rajaraman; Nils Stein; Rajiv Sharma; Benjamin Kilian; Patrick Schweizer

BackgroundNon-host resistance, NHR, to non-adapted pathogens and quantitative host resistance, QR, confer durable protection to plants and are important for securing yield in a longer perspective. However, a more targeted exploitation of the trait usually possessing a complex mode of inheritance by many quantitative trait loci, QTLs, will require a better understanding of the most important genes and alleles.ResultsHere we present results from a transient-induced gene silencing, TIGS, approach of candidate genes for NHR and QR in barley against the powdery mildew fungus Blumeria graminis. Genes were selected based on transcript regulation, multigene-family membership or genetic map position. Out of 1,144 tested RNAi-target genes, 96 significantly affected resistance to the non-adapted wheat- or the compatible barley powdery mildew fungus, with an overlap of four genes. TIGS results for QR were combined with transcript regulation data, allele-trait associations, QTL co-localization and copy number variation resulting in a meta-dataset of 51 strong candidate genes with convergent evidence for a role in QR.ConclusionsThis study represents an initial, functional inventory of approximately 3% of the barley transcriptome for a role in NHR or QR against the powdery mildew pathogen. The discovered candidate genes support the idea that QR in this Triticeae host is primarily based on pathogen-associated molecular pattern-triggered immunity, which is compromised by effector molecules produced by the compatible pathogen. The overlap of four genes with significant TIGS effects both in the NHR and QR screens also indicates shared components for both forms of durable pathogen resistance.


Journal of Plant Physiology | 2011

HyphArea--automated analysis of spatiotemporal fungal patterns.

Tobias Baum; Aura Navarro-Quezada; Wolfgang Knogge; Dimitar Douchkov; Patrick Schweizer; Udo Seiffert

In phytopathology quantitative measurements are rarely used to assess crop plant disease symptoms. Instead, a qualitative valuation by eye is often the method of choice. In order to close the gap between subjective human inspection and objective quantitative results, the development of an automated analysis system that is capable of recognizing and characterizing the growth patterns of fungal hyphae in micrograph images was developed. This system should enable the efficient screening of different host-pathogen combinations (e.g., barley-Blumeria graminis, barley-Rhynchosporium secalis) using different microscopy technologies (e.g., bright field, fluorescence). An image segmentation algorithm was developed for gray-scale image data that achieved good results with several microscope imaging protocols. Furthermore, adaptability towards different host-pathogen systems was obtained by using a classification that is based on a genetic algorithm. The developed software system was named HyphArea, since the quantification of the area covered by a hyphal colony is the basic task and prerequisite for all further morphological and statistical analyses in this context. By means of a typical use case the utilization and basic properties of HyphArea could be demonstrated. It was possible to detect statistically significant differences between the growth of an R. secalis wild-type strain and a virulence mutant.


New Phytologist | 2016

The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus

Dimitar Douchkov; Stefanie Lueck; Goetz Hensel; Jochen Kumlehn; Jeyaraman Rajaraman; Annika Johrde; Monika S. Doblin; Cherie T. Beahan; Michaela Kopischke; Rene Fuchs; Volker Lipka; Rients E. Niks; Vincent Bulone; Jamil Chowdhury; Alan Little; Rachel A. Burton; Antony Bacic; Geoffrey B. Fincher; Patrick Schweizer

Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their hosts cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.

Collaboration


Dive into the Dimitar Douchkov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge