Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitar Popmintchev is active.

Publication


Featured researches published by Dimitar Popmintchev.


Science | 2012

Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers.

Tenio Popmintchev; Ming-Chang Chen; Dimitar Popmintchev; Paul Arpin; Susannah Brown; S. Ališauskas; Giedrius Andriukaitis; Tadas Balciunas; Oliver D. Mücke; Audrius Pugzlys; Andrius Baltuska; Bonggu Shim; Samuel E. Schrauth; Alexander L. Gaeta; Carlos Hernandez-Garcia; Luis Plaja; Andreas Becker; Agnieszka Jaron-Becker; Margaret M. Murnane; Henry C. Kapteyn

From Long to Short When you play a string instrument, you raise the frequency, or pitch, of the note by shortening the vibrating portion of the string: Drop the length in half, and you hear a harmonic at double the frequency. It is possible to do essentially the same thing with light waves by using selective excitation and relaxation processes of the electrons in crystals or high-pressure gases through which the beam of light is directed to produce light harmonics. Over the past decade, researchers have been optimizing the conversion of red light to the far edge of the ultraviolet, which corresponds to tens of harmonics. Popmintchev et al. (p. 1287) now show that mid-infrared light can undergo a process in high-pressure gas to generate ultrahigh harmonics up to orders greater than 5000 in the x-ray regime. An electron excitation process in a high-pressure gas converts infrared light into a well-confined beam of x-rays. High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo–electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.


Physical Review Letters | 2010

Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

Ming-Chang Chen; Paul Arpin; Tenio Popmintchev; Michael Gerrity; Bosheng Zhang; Matthew D. Seaberg; Dimitar Popmintchev; Margaret M. Murnane; Henry C. Kapteyn

We demonstrate fully phase-matched high harmonic emission spanning the water window spectral region important for nano- and bioimaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth (≈300  eV) to date from any light source, small or large, that is consistent with a single subfemtosecond burst. The harmonic photon flux at 0.5 keV is 10³ higher than demonstrated previously. This work extends bright, spatially coherent, attosecond pulses into the soft x-ray region for the first time.


Nature Photonics | 2015

Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics

Ofer Kfir; Patrik Grychtol; Emrah Turgut; Ronny Knut; Dmitriy Zusin; Dimitar Popmintchev; Tenio Popmintchev; Hans T. Nembach; Justin M. Shaw; Avner Fleischer; Henry C. Kapteyn; Margaret M. Murnane; Oren Cohen

Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, this capability was available only at large-scale X-ray facilities such as synchrotrons. Here we demonstrate the first bright, phase-matched, extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to the linearly polarized high harmonic sources that have been used very successfully for ultrafast element-selective magneto-optic experiments. This work thus represents a critical advance that makes possible element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution, using tabletop-scale setups.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

Ming-Chang Chen; Christopher A. Mancuso; Carlos Hernandez-Garcia; Franklin Dollar; Ben Galloway; Dimitar Popmintchev; Pei-Chi Huang; Barry C. Walker; Luis Plaja; Agnieszka Jaron-Becker; Andreas Becker; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

Significance Attosecond pulses driven by femtosecond lasers make it possible to capture the fastest electron dynamics in molecules and materials. To date, attosecond pulses driven by widely available 800-nm lasers were limited to the extreme UV region of the spectrum, which restricted the range of materials, liquid, and molecular systems that could be explored because of the limited penetrating power. Our recent work showed that longer-wavelength midinfrared driving lasers at wavelengths from 1 to 4 µm are optimal for generating shorter-wavelength, bright, soft X-ray beams. Here we show that longer-pulse-duration midinfrared lasers are also optimal for generating shorter-pulse-duration, attosecond, soft X-rays. This is an unexpected and beautiful convergence of physics: bright, soft X-ray high harmonics naturally emerge as isolated attosecond bursts. High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.


Science | 2015

Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

Dimitar Popmintchev; Carlos Hernandez-Garcia; Franklin Dollar; Christopher A. Mancuso; J. A. Pérez-Hernández; Ming-Chang Chen; Amelia Hankla; Xiaohui Gao; Bonggu Shim; Alexander L. Gaeta; Maryam Tarazkar; Dmitri A. Romanov; Robert J. Levis; Jim Gaffney; M. E. Foord; Stephen B. Libby; Agnieszka Jaron-Becker; Andreas Becker; Luis Plaja; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

Short wavelengths birth shorter ones The shortest laser pulses—with durations measured in attoseconds—arise from a process termed high-harmonic generation (HHG). Essentially, a longer, “driving” pulse draws electrons out of gaseous atoms like a slingshot, and, when they ricochet back, light emerges at shorter wavelengths. Most HHG has been carried out using light near the visible/infrared boundary for the driving pulse. Popmintchev et al. used an ultraviolet driving pulse instead, which yielded an unexpectedly efficient outcome. These results could presage a more generally efficient means of creating x-ray pulses for fundamental dynamics studies as well as technological applications. Science, this issue p. 1225 Ultraviolet pulses show unexpected efficiency in generating the higher-frequency emission underlying attosecond spectroscopy. High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.


Journal of Physics B | 2016

Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

Ofer Kfir; Patrik Grychtol; Emrah Turgut; Ronny Knut; Dmitriy Zusin; Avner Fleischer; Eliyahu Bordo; Tingting Fan; Dimitar Popmintchev; Tenio Popmintchev; Henry C. Kapteyn; Margaret M. Murnane; Oren Cohen

Author(s): Kfir, O; Grychtol, P; Turgut, E; Knut, R; Zusin, D; Fleischer, A; Bordo, E; Fan, T; Popmintchev, D; Popmintchev, T; Kapteyn, H; Murnane, M; Cohen, O | Abstract:


conference on lasers and electro-optics | 2011

Bright coherent attosecond-to-zeptosecond kiloelectronvolt X-ray supercontinua

Tenio Popmintchev; Ming-Chang Chen; Dimitar Popmintchev; S. Ališauskas; Giedrius Andriukaitis; Tadas Balciunas; Audrius Pugzlys; Andrius Baltuska; Margaret M. Murnane; Henry C. Kapteyn

We demonstrate bright coherent X-ray supercontinua generated through fully phase-matched upconversion of mid-IR laser light into the keV spectral region. The ultrabroad bandwidths can support pulse durations of few attoseconds, scalable to zeptosecond time scales.


Optics Express | 2016

Lorentz drift compensation in high harmonic generation in the soft and hard X-ray regions of the spectrum

Benjamin R. Galloway; Dimitar Popmintchev; Emilio Pisanty; Daniel D. Hickstein; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

We present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 1015 W/cm2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling which acts in addition to the dominant high harmonic flux scaling of λ-(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.


19th International Conference on Ultrafast Phenomena (2014), paper 10.Thu.B.1 | 2014

X-Ray Magnetic Circular Dichroism Probed Using High Harmonics

Patrick Grychtol; Ofer Kfir; Ronny Knut; Emrah Turgut; Dmitriy Zusin; Dimitar Popmintchev; Tenio Popmintchev; Hans T. Nembach; Justin M. Shaw; Avner Fleischer; Henry C. Kapteyn; Margaret M. Murnane; Oren Cohen

We demonstrate the first generation and phase matching of circularly-polarized high harmonics, which are bright enough for X-ray magnetic circular dichroism measurements at the M absorption edges of the magnetic materials Fe, Co and Ni.


Archive | 2015

Bright Isolated Attosecond Soft X-Ray Pulses

K. Yamanouchi; Steven T. Cundiff; Regina de Vivie-Riedle; Makoto Kuwata-Gonokami; L. F. DeMauro; Ming-Chang Chen; Christopher A. Mancuso; Carlos Hernandez-Garcia; Franklin Dollar; Benjamin R. Galloway; Dimitar Popmintchev; Benjamin Langdon; Amelie Auger; Pei-Chi Huang; Barry C. Walker; Luis Plaja; Agnieszka Jaron-Becker; Andreas Becker; Margaret M. Murnane; Henry C. Kapteyn; Tenio Popmintchev

By driving the high harmonic generation process with multi-cycle mid-infrared laser pulses, we demonstrate bright isolated, attosecond soft X-ray pulses for the first time.

Collaboration


Dive into the Dimitar Popmintchev's collaboration.

Top Co-Authors

Avatar

Margaret M. Murnane

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Tenio Popmintchev

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Henry C. Kapteyn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Ming-Chang Chen

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Jaron-Becker

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Andreas Becker

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Plaja

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar

Franklin Dollar

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Audrius Pugzlys

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge