Dimitra A. Lambropoulou
Aristotle University of Thessaloniki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dimitra A. Lambropoulou.
Science of The Total Environment | 2014
Christina I. Kosma; Dimitra A. Lambropoulou; Triantafyllos A. Albanis
In the present work, an extensive study on the presence of eighteen pharmaceuticals and personal care products (PPCPs) in eight wastewater treatment plants (WWTPs) of Greece has been conducted. The study covered four sampling periods over 1-year, where samples (influents; effluents) from eight WWTPs of various cities in Greece were taken. All WWTPs investigated are equipped with conventional activated sludge treatment. A common pre-concentration step based on SPE was applied, followed by LC-UV/Vis-ESI-MS. Further confirmation of positive findings was accomplished by using LC coupled to a high resolution Orbitrap mass spectrometer. The results showed the occurrence of all target compounds in the wastewater samples with concentrations up to 96.65 μg/L. Paracetamol, caffeine, trimethoprim, sulfamethoxazole, carbamazepine, diclofenac and salicylic acid were the dominant compounds, while tolfenamic acid, fenofibrate and simvastatin were the less frequently detected compounds with concentrations in effluents below the LOQ. The removal efficiencies showed that many WWTPs were unable to effectively remove most of the PPCPs investigated. Finally, the study provides an assessment of the environmental risk posed by their presence in wastewaters by means of the risk quotient (RQ). RQs were more than unity for various compounds in the effluents expressing possible threat for the aquatic environment. Triclosan was found to be the most critical compound in terms of contribution and environmental risk, concluding that it should be seriously considered as a candidate for regulatory monitoring and prioritization on a European scale on the basis of realistic PNECs. The results of the extensive monitoring study contributed to a better insight on PPCPs in Greece and their presence in influent and effluent wastewaters. Furthermore, the unequivocal identification of two transformation products of trimethoprim in real wastewaters by using the advantages of the LTQ Orbitrap capabilities provides information that should be taken into consideration in future PPCP monitoring studies in wastewaters.
Science of The Total Environment | 2015
E. Evgenidou; Ioannis Konstantinou; Dimitra A. Lambropoulou
Pharmaceuticals and personal care products (PPCPs) along with illicit drugs (IDs) are newly recognized classes of environmental pollutants and are receiving considerable attention because of their environmental impacts: frequent occurrence, persistence and risk to aquatic life and humans. However, relatively little information is often available with regard to their possible biotic and abiotic transformation products (TPs). This lack of knowledge has resulted in a substantial amount of ongoing effort to develop methods and approaches that would assess their occurrence, degradability potential elimination mechanisms and efficiencies in sewage treatment plants as well as environmental and human health risks. In this article, an extensive literature survey was performed in order to present the current stage of knowledge and progress made in the occurrence of TPs of PPCPs and IDs in raw and treated wastewaters. Apart from the TPs resulting from structural transformations of the parent compound in the aquatic environment or in technological treatment facilities (e.g. sewage and drinking water treatment plants), free metabolites and drug conjugates formed during human metabolism have also been included in this review as they are also released into the aquatic environment through wastewaters. Their concentration levels were reported in influents and effluents of WWTPs, hospital effluents and their removals in the treatment plants were discussed. Finally, information on the toxicity of TPs has been compiled when available.
Water Research | 2014
Maria Antonopoulou; E. Evgenidou; Dimitra A. Lambropoulou; Ioannis Konstantinou
In view of the global concern about the occurrence of taste and odor (T&O) compounds in waters for drinking water supply and the necessity for the development of more innovative and efficient technologies for water treatment and depuration, the focus of this study is to provide a state of the art overview on current knowledge for the application of advanced oxidation technologies for the treatment of T&O compounds in aquatic media. The most representative and newly emerging compounds belonging to the major groups of T&O compounds, such as geosmin, methylisoborneol, benzothiazoles, mercaptans and sulfides as well as aromatic and other miscellaneous T&O compounds, are included in the systematic overview. The current data has been compiled and extensively discussed in terms of the degree of degradation, reaction kinetics, effect of operational parameters and water quality, identity of intermediate and final products and possible transformation pathways.
Journal of Hazardous Materials | 2010
Christina I. Kosma; Dimitra A. Lambropoulou; Triantafyllos A. Albanis
A monitoring study was carried out for the four seasons over 1-year monitoring period (March 2006-March 2007) to investigate the residues of 11 pharmaceuticals and personal care products (PPCPs) belonging to various therapeutic categories. The selected areas of the study were the municipal and hospital wastewater treatment plants (WWTPs) of Ioannina city, located in Western Greece. The most common pre-treatment technique for pharmaceuticals, solid-phase extraction (SPE), was used for the isolation and pre-concentration of the target analytes. The samples were screened using gas chromatography mass spectrometry (GC-MS). The results of the monitoring study, showed the occurrence of all target compounds in the wastewater samples. Concentrations in the municipal WWTP ranged between 0.3 and 164.4 microg/L in the influent and between 0.5 and 13.9 microg/L in the effluent. In the hospital WWTP concentrations ranged between 0.6 and 70.1 microg/L in the influent and between 0.5 and 14.6 microg/L in the effluent. Mean removal efficiencies ranged between 13% and 97% and between 9% and 87% for municipal and hospital WWTPs, respectively. Removal efficiencies were higher in the municipal WWTP than in the hospital WWTP.
Journal of Chromatography A | 2002
Dimitra A. Lambropoulou; Dimosthenis L. Giokas; V.A Sakkas; T. A. Albanis; M.I Karayannis
A method has been developed for the trace determination of two sunscreen constituents (2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid) in water samples, which are commonly used in commercial formulations. The method employs solid-phase microextraction (SPME) and gas chromatography with flame ionization and mass spectrometric detection. The technique was developed with headspace and direct sampling in order to demonstrate the applicability of these SPME extraction modes for the identification of these two UV absorbing compounds in waters. The main parameters affecting the SPME process, such as desorption time, extraction time profile, salt additives, pH, and temperature, were investigated. The poly(dimethylsiloxane) 100-microm and polyacrylate 85-microm fiber coatings were found to be the most efficient for the extraction of these compounds from aqueous matrices. Linear calibration curves in the wide range of 10-500 microg/l were obtained for both compounds yielding typical RSD values of 5-9% for both extraction modes. The recoveries were relatively high, 82-98%, with quantitation limits below 1 microg/l. A comparison between the proposed methods and the conventional multiresidue solid-phase extraction revealed that the proposed technique(s) can be reliably used for sunscreen residue measurement in water samples with satisfactory results.
Journal of Chromatography A | 2001
Dimitra A. Lambropoulou; Triantafyllos A. Albanis
Headspace solid-phase microextraction (HS-SPME) has been developed for the analysis of seven organophosphorus insecticides, i.e. diazinon, fenitrothion, fenthion, ethyl parathion, methyl bromophos, ethyl bromophos and ethion in natural waters. Their determination was carried out using gas chromatography with flame thermionic and mass spectrometric detection. To perform the HS-SPME, two types of fibre have been assayed and compared: polyacrylate (PA 85 microm), and polydimethylsiloxane (PDMS 100 microm). The main parameters affecting the HS-SPME process such as temperature, salt additives, memory effect, stirring rate and adsorption-time profile were studied. The method was developed using spiked natural waters such as ground, sea, river and lake water in a concentration range of 0.05-1 microg/l. The HS-SPME conditions were optimized in order to obtain the maximum sensitivity. Detection limits varied from 0.01 to 0.04 microg/l and relative standard deviations (RSD <17%) were obtained showing that the precision of the method is reliable. The method showed also good linearity for the tested concentration range with regression coefficients ranging between 0.985 and 0.999. Recoveries were in relatively high levels for all the analytes and ranged from 80 to 120%. Water samples collected from different stations along the flow of Kalamas river (NW Greece) were analyzed using the optimized conditions in order to evaluate the potential of the proposed method to the trace-level screening determination of organophosphorus insecticides. The analysis with HS-SPME has less background interference and the advantage of its non-destructive nature reveal the possibility of the repetitive use of the SPME fibre.
Journal of Hazardous Materials | 2009
V. Belessi; George E. Romanos; N. Boukos; Dimitra A. Lambropoulou; C. Trapalis
Nanoparticles of TiO2 were synthesized and characterized by XRD, BET, TG/DTA and TEM measurements. The commercial azo dye Reactive Red 195 (RR195) was selected as a model dye in order to examine the adsorption capacity of TiO2 at room temperature, under dark conditions. It was demonstrated that RR195 could be efficiently adsorbed in aqueous suspension of TiO2. A study on the effects of various parameters like initial pH, concentration of dye and concentration of adsorbent has been carried out in order to find optimum adsorption conditions. The optimum pH of sorption was 3. Substantial reduction of COD, besides removal of colour, was also achieved. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. Equilibrium data fitted very well with the Langmuir model signifying the energetic homogeneity of TiO2 surface adsorption sites. At the temperature of 30 degrees C, the maximum monolayer adsorption capacity obtained from the Langmuir model is approximately 87 mg/g (pH 3.0). Kinetic studies were carried out and showed a rapid sorption of dye in the first 30 min while equilibrium was reached at 1h. Three kinetic adsorption models were used to describe the kinetics data, the pseudo-first-order model, the pseudo-second-order model and the intraparticle diffusion model. The sorption kinetics of dye was best described by the pseudo-second-order kinetic model.
Environmental Toxicology and Chemistry | 2005
Dimitra Hela; Dimitra A. Lambropoulou; Ioannis Konstantinou; Triantafyllos A. Albanis
Monitoring of pesticide residues in water and sediments was conducted as a basis for subsequent ecotoxicological risk assessment for the shallow eutrophic Lake Pamvotis, northwestern Greece. During a one-year study period, atrazine, desethylatrazine (DEA), simazine, diazinon, malathion, oxamyl, carbofuran, and ethion were detected in water and atrazine, desethylatrazine, diazinon, and s-ethyl dipropylthiocarbamate (EPTC) in sediments, all at ppb concentration level. Temporal variation in pesticide concentrations was observed. Highest residue levels for most pesticides in both water and sediment matrices occurred in the May to July period with the exception of atrazine and DEA, which show highest levels in water during the September to November period. The ecological risk associated with pesticide contamination was assessed using two different methods: The toxic unit method, which provides a first indication of the relative contribution of detected pesticides to the total toxicity and a probabilistic approach, and the inverse method of Van Straalen and Denneman, which is used to quantify the ecological risk. The maximum percentage of the ecological risk was 10.3 and 51.8% for water and 17.2 and 70.6% for sediment, based on acute and chronic level, respectively. These results show that pesticides exert a significant pressure on the aquatic system of Lake Pamvotis, especially for the chronic-effect level. Simple quotient methods should be coupled with higher-tier risk assessment, especially if restoration activities on lake ecosystems are to be undertaken for sustainable development.
Journal of Chromatography A | 2003
Dimitra A. Lambropoulou; Triantafyllos A. Albanis
A headspace solid-phase microextraction (HS-SPME) method in combination with GC-MS was used for the extraction and quantification of diazinon, fenitrothion, fenthion, parathion ethyl, bromophos methyl, bromophos ethyl and ethion. The method was developed using a 100-microm poly(dimethylsiloxane) fiber. The obtained results showed higher responses of the insecticides after addition of aliquots of water and solvent to the fruit samples. Calibration curves that were constructed for the analytes spiked into strawberry and cherry samples followed linear relationships with good correlation coefficients (R2 > 0.986). Linearity range was between 50 and 500 microg/kg and the precision was found to be lower than 15% when applying the optimized HS-SPME procedure to fruit samples. Limits of detection in both strawberry and cherry samples using GC-MS (selected ion monitoring mode) were below 13 microg/kg. Moreover, the HS-SPME method was applied to the analysis of fruit samples and compared with liquid-liquid extraction. Results obtained in this study were in good agreement with those obtained using liquid-liquid extraction demonstrating that the recommended procedure was a fast, accurate and stable sample pretreatment method obtaining good efficiency for the extraction of organophosporus insecticides from strawberries and cherries.
Science of The Total Environment | 2016
Myrsini Papageorgiou; Christina I. Kosma; Dimitra A. Lambropoulou
A comprehensive study, which contains the seasonal occurrence, removal, mass loading and environmental risk assessment of 55 multi-class pharmaceuticals and personal care products (PPCPs), took place in the wastewater treatment plant (WWTP) of Volos, Greece. A one year monitoring study was performed and the samples were collected from the influent and the effluent of the WWTP. Solid phase extraction was used for the pre-concentration of the samples followed by an LC-DAD-ESI/MS analysis. Positive samples were further confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The maximum concentrations of the PPCPs varied between 21 ng/L and 15,320 ng/L in the influents and between 18 ng/L and 9965 ng/L in the effluents. The most commonly detected PPCPs were the diuretic furosemide, the beta-blockers atenolol and metoprolol, the analgesics paracetamol, nimesulide, salicylic acid and diclofenac and the psychomotor stimulant caffeine. The removal efficiencies ranged between negative and high removal rates, demonstrating that the WWTP is not able to efficiently remove the complex mixture of PPCPs. The estimated mass loads ranged between 5.1 and 3513 mg/day/1000 inhabitants for WWTP influent and between 4.1 to 2141 mg/day/1000 inhabitants for WWTP effluent. Finally, environmental risk assessment has been regarded a necessary part of the general research. According to the results produced from the calculation of the risk quotient on three trophic levels, the anti-inflammatory drug diclofenac and the antibiotics, trimethoprim and ciprofloxacin, identified to be of high potential environmental risk for acute toxicity, while diclofenac also for chronic toxicity.