Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitra Kalamida is active.

Publication


Featured researches published by Dimitra Kalamida.


PLOS ONE | 2015

Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines

Michael I. Koukourakis; Dimitra Kalamida; Alexandra Giatromanolaki; Christos E. Zois; Efthimios Sivridis; Stamatia Pouliliou; Achilleas Mitrakas; Kevin C. Gatter; Adrian L. Harris

LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.


Cancer Biology & Therapy | 2014

Autophagy and lysosomal related protein expression patterns in human glioblastoma.

Alexandra Giatromanolaki; Efthimios Sivridis; Achileas Mitrakas; Dimitra Kalamida; Christos E. Zois; Syed Haider; Charitomeni Piperidou; Aglaia Pappa; Kevin C. Gatter; Adrian L. Harris; Michael I. Koukourakis

Glioblastoma cells are resistant to apoptotic stimuli with autophagic death prevailing under cytotoxic stress. Autophagy interfering agents may represent a new strategy to test in combination with chemo-radiation. We investigated the patterns of expression of autophagy related proteins (LC3A, LC3B, p62, Beclin 1, ULK1 and ULK2) in a series of patients treated with post-operative radiotherapy. Experiments with glioblastoma cell lines (T98 and U87) were also performed to assess autophagic response under conditions simulating the adverse intratumoral environment. Glioblastomas showed cytoplasmic overexpression of autophagic proteins in a varying extent, so that cases could be grouped into low and high expression groups. 10/23, 5/23, 13/23, 5/23, 8/23 and 9/23 cases examined showed extensive expression of LC3A, LC3B, Beclin 1, Ulk 1, Ulk 2 and p62, respectively. Lysosomal markers Cathepsin D and LAMP2a, as well as the lyososomal biogenesis transcription factor TFEB were frequently overexpressed in glioblastomas (10/23, 11/23, and 10/23 cases, respectively). TFEB was directly linked with PTEN, Cathepsin D, HIF1α, LC3B, Beclin 1 and p62 expression. PTEN was also significantly related with LC3B but not LC3A expression, in both immunohistochemistry and gene expression analysis. Confocal microscopy in T98 and U87 cell lines showed distinct identity of LC3A and LC3B autophagosomes. The previously reported stone-like structure (SLS) pattern of LC3 expression was related with prognosis. SLS were inducible in glioblastoma cell lines under exposure to acidic conditions and 2DG mediated glucose antagonism. The present study provides the basis for autophagic characterization of human glioblastoma for further translational studies and targeted therapy trials.


Lung Cancer | 2015

Increased expression of transcription factor EB (TFEB) is associated with autophagy, migratory phenotype and poor prognosis in non-small cell lung cancer

Alexandra Giatromanolaki; Dimitra Kalamida; Efthimios Sivridis; Ilias V. Karagounis; Kevin C. Gatter; Adrian L. Harris; Michael I. Koukourakis

OBJECTIVES We investigated the role of lysosomal biogenesis and hydrolase activity in the clinical behavior and postoperative outcome of lung cancer. MATERIALS AND METHODS Using immunohistochemistry we investigated the expression of the transcription factor EB (TFEB) which orchestrates lysosomal biogenesis, the lysosome membrane protein LAMP2a and of the lysosomal hydrolase cathepsin D in a series of 98 non-small cell lung carcinomas (NSCLC) treated with surgery alone. In vitro experiments with the A549 and H1299 lung cancer cell lines were also performed. RESULTS Overexpression of TFEB, LAMP2a and Cathepsin D was noted in 47/98 (47.9%), 43/98 (43.9%) and 39/98 (39.8%) cases, respectively, and were significantly correlated with each other and with adenocarcinomas. High LAMP2a was related to high histology grade. Linear regression analysis confirmed significant association of TFEB with BNIP3 (p=0.0003, r=0.35) and LC3A with LAMP2a expression (p=0.0002, r=0.37). An inverse association of Cathepsin D expression with stone-like structures (SLS) was recorded (p=0.02, r=0.22). On univariate analysis all three lyososomal variables were associated with poor prognosis (p=0.05, 0.04 and 0.01, for TFEB, Cathepsin D and LAMP2a, respectively). Multivariate analysis showed that the SLS number (p=0.0001, HR5.37), Cathepsin D expression (p=0.01, HR=2.2) and stage (p=0.01, HR=1.5) were independent prognostic variables. Silencing of TFEB with siRNAs in the A549 and H1299 lung cancer cell lines did not affect proliferation but resulted in reduced migration ability. CONCLUSION Lysosomal biogenesis is linked to autophagosomal protein expression in NSCLC and characterizes subgroups of high risk patients after complete surgical lung tumor resection.


PLOS ONE | 2014

Important Role of Autophagy in Endothelial Cell Response to Ionizing Radiation

Dimitra Kalamida; Ilias V. Karagounis; Alexandra Giatromanolaki; Michael I. Koukourakis

Objectives Vasculature damage is an important contributor to the side-effects of radiotherapy. The aim of this study is to provide insights into the radiobiology of the autophagic response of endothelial cells. Methods and Materials Human umbilical vascular endothelial cells (HUVEC) were exposed to 2 Gy of ionizing radiation (IR) and studied using confocal microscopy and western blot analysis, at 4 and 8 days post-irradiation. The role of autophagy flux in HUVEC radio-sensitivity was also examined. Results IR-induced accumulation of LC3A+, LC3B+ and p62 cytoplasmic vacuoles, while in double immunostaining with lysosomal markers (LAMP2a and CathepsinD) repression of the autophagolysosomal flux was evident. Autophagy-related proteins (ATF4, HIF1α., HIF2α, Beclin1) were, however, induced excluding an eventual repressive effect of radiation on autophagy initiating protein expression. Exposure of HUVEC to SMER28, an mTOR-independent inducer of autophagy, enhanced proLC3 and LC3A, B-I protein expression and accelerated the autophagic flux. Pre-treatment of HUVEC with SMER28 protected against the blockage of autophagic flux induced by IR and conferred radio-resistance. Suppression of LC3A/LC3B proteins with siRNAs resulted in radio-sensitization. Conclusions The current data provide a rationale for the development of novel radioprotection policies targeting the autophagic pathway.


International Journal of Radiation Biology | 2016

Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer

Michael I. Koukourakis; Christos Kakouratos; Dimitra Kalamida; Zoi Bampali; Sophia Mavropoulou; Efthimios Sivridis; Alexandra Giatromanolaki

Abstract Purpose: To assess whether anaerobic metabolism, proliferation activity and stem cell content are linked with radioresistance in bladder cancer. Materials and methods: Tissue sections from 66 patients with invasive transitional cell bladder cancer treated with hypofractionated accelerated radiotherapy, was immunohistochemically analyzed for the Hypoxia-Inducible Factor 1α (HIF1α) and the anaerobic glycolysis enzyme lactate dehydrogenase 5 (LDH5). Proliferation index (Ki-67) and stem-cell marker (cluster of differentiation CD44, aldehyde dehydrogenase ALDH1) expression was also examined. Results: Both HIF1α and LDH5 expression were linked with high CD44 stem cell population (p = 0.001 and 0.05, respectively), while high Ki-67 proliferation index was linked with nuclear LDH5 expression (p = 0.03) and high histological grade (p = 0.02). A strong significant association of HIF1α (p = 0.0009) and of LDH5 (p < 0.0001) with poor local relapse free survival (LRFS) was noted, which was also confirmed in multivariate analysis. A significant association with overall survival was also noted. Silencing of lactate dehydrogenase LDHA gene in the human RT112 bladder cancer cell line, or exposure to oxamate (LDH activity inhibitor), resulted in strong radio-sensitization. Conclusions: HIF1α and LDH5 are markers of poor outcome in patients with bladder cancer treated with radiotherapy. Blockage of anaerobic metabolism may prove of importance in clinical radiotherapy.


PLOS ONE | 2015

Fever-Range Hyperthermia vs. Hypothermia Effect on Cancer Cell Viability, Proliferation and HSP90 Expression

Dimitra Kalamida; Ilias V. Karagounis; Achilleas Mitrakas; Sofia Kalamida; Alexandra Giatromanolaki; Michael I. Koukourakis

Purpose The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression. Materials and Methods A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index), apoptosis (Caspase 9) and HSP90 expression was studied by confocal microscopy. Results Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines. Conclusions The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.


International Journal of Radiation Oncology Biology Physics | 2015

Survival Fraction at 2 Gy and γH2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities

Stamatia Pouliliou; T. Lialiaris; Thespis Dimitriou; Alexandra Giatromanolaki; Dimitrios Papazoglou; Aglaia Pappa; Kyriaki Pistevou; Dimitra Kalamida; Michael I. Koukourakis

PURPOSE Predictive assays for acute radiation toxicities would be clinically relevant in radiation oncology. We prospectively examined the predictive role of the survival fraction at 2 Gy (SF2) and of γH2AX (double-strand break [DSB] DNA marker) expression kinetics in peripheral blood mononuclear cells (PBMCs) from cancer patients before radiation therapy. METHODS AND MATERIALS SF2 was measured with Trypan Blue assay in the PBMCs from 89 cancer patients undergoing radiation therapy at 4 hours (SF2[4h]) and 24 hours (SF2[24h]) after ex vivo irradiation. Using Western blot analysis and band densitometry, we further assessed the expression of γH2AX in PBMC DNA at 0 hours, 30 minutes, and 4 hours (33 patients) and 0 hour, 4 hours, and 24 hours (56 patients), following ex vivo irradiation with 2 Gy. Appropriate ratios were used to characterize each patient, and these were retrospectively correlated with early radiation therapy toxicity grade. RESULTS The SF2(4h) was inversely correlated with the toxicity grade (P=.006). The γH2AX-ratio(30min) (band density of irradiated/non-irradiated cells at 30 minutes) revealed, similarly, a significant inverse association (P=.0001). The DSB DNA repair rate from 30 minutes to 4 hours, calculated as the relative RγH2AX-ratio (γH2AX-ratio(4h)/γH2AX-ratio(30min)) showed a significant direct association with high toxicity grade (P=.01). CONCLUSIONS Our results suggest that SF2 is a significant radiation sensitivity index for patients undergoing radiation therapy. γH2AX Western blot densitometry analysis provided 2 important markers of normal tissue radiation sensitivity. Low γH2AX expression at 30 minutes was linked with high toxicity grade, suggesting that poor γH2AX repair activity within a time frame of 30 minutes after irradiation predicts for poor radiation tolerance. On the other hand, rapid γH2AX content restoration at 4 hours after irradiation, compatible with efficient DSB repair ability, predicts for increased radiation tolerance.


Clinical Breast Cancer | 2017

Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis

Alexandra Giatromanolaki; Efthimios Sivridis; Dimitra Kalamida; Michael I. Koukourakis

Background: Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior. Methods: The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1‐stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia‐related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF‐7 cancer cell line. Results: Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P < .0001, r = 0.53), cathepsin D (P = .0002, r = 0.36), light chain 3A (LC3A) (P = .02, r = 0.22), and hypoxia‐inducible factor 2‐alpha (HIF‐2&agr;) (P = .01, r = 0.25) expression and inversely with progesterone receptor (P = .01, r = 0.22). High vascular density was directly linked with LAMP2a (P = .05, r = 0.18) and cathepsin D (P = .005, r = 0.28). In Kaplan‐Meier survival analysis, TFEB and cathepsin D expression were related to an ominous prognosis (P = .001 and P = .03, respectively). In multivariate analysis, TFEB expression sustained its independent prognostic significance (P = .05, hazard ratio 2.1). In in vitro experiments, acidity triggered overexpression of TFEB and nuclear translocation. Conclusion: Intense TFEB expression and lysosomal biogenesis, evident in one fourth of early breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies. Micro‐Abstract: Intense transcription factor EB (TFEB) expression and lysosomal biogenesis exists in one fourth of early breast carcinomas (100 cases studied) and relates with poor prognosis. In in vitro experiments, acidity triggered TFEB overexpression. TFEB is a sound target to develop lysosome interference.


Anti-Cancer Drugs | 2014

Effect of mitochondrial metabolism-interfering agents on cancer cell mitochondrial function and radio/chemosensitivity.

Achilleas Mitrakas; Dimitra Kalamida; Michael I. Koukourakis

Abnormal mitochondrial function is common in cancer cells and activates metabolic pathways suppressed in normal tissues. Experimental and clinical studies suggest that mitochondria might serve as targets for novel anticancer therapies. We investigated whether mitochondrial metabolism-interfering agents (MMIAs) available currently in clinical practice affect cancer cell mitochondrial metabolism and synergize with chemotherapy and radiotherapy. Two cancer cell lines A549 (lung cancer) and DU145 (prostate cancer) were treated with a variety of MMIAs (metformin, nimodipine, memantine, oxytetracycline, amiodarone, and sodium azide) and their response was assessed using a resazurin reduction method and confocal microscopy. Focusing on amiodarone and metformin, we investigated their potential sensitizing effect on cancer cells when treated with ionizing radiation, cisplatin, and docetaxel. Resazurin reduction was increased by metformin and decreased by amiodarone at nontoxic concentrations. Amiodarone induced mitochondrial swelling, whereas metformin exerted no apparent effect on their morphology. Amiodarone and metformin exerted a weak radiosensitization effect on A549, whereas a synergetic activity with cisplatin and docetaxel was evident in both cell lines. It can be concluded that amiodarone and metformin, being well-established drugs in clinical practice, constitute two potential drugs for further experimental and clinical evaluation as cancer cell sensitizers to chemotherapy and radiotherapy.


ChemMedChem | 2017

Trachycladines and Analogues: Synthesis and Evaluation of Anticancer Activity

Zisis V. Peitsinis; Achilleas Mitrakas; Eirini A. Nakiou; Dafni A. Melidou; Dimitra Kalamida; Christos Kakouratos; Michael I. Koukourakis; Alexandros E. Koumbis

The synthesis of four new analogues of marine nucleoside trachycladine A was accomplished by direct regio‐ and stereoselective Vorbrüggen glycosylations of 2,6‐dichloropurine and 2‐chloropurine with a d‐ribose‐derived chiron. Naturally occurring trachycladines A and B and a series of analogues were examined for their cytotoxic activity against a number of cancer cell lines (glioblastoma, lung, and cervical cancer). Parent trachycladine A and two analogues (the diacetate of the 2,6‐dichloropurine derivative and N‐cyclopropyl trachycladine A) resulted in a significant decrease in cell viability, with the latter exhibiting a stronger effect. The same compounds enhanced the cytotoxic effect of docetaxel in lung cancer cell lines, whereas additional experiments revealed that their mode of action relies on mitotic catastrophe rather than DNA damage. Moreover, their activity as autophagic flux blockers was postulated.

Collaboration


Dive into the Dimitra Kalamida's collaboration.

Top Co-Authors

Avatar

Michael I. Koukourakis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Alexandra Giatromanolaki

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Efthimios Sivridis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Achilleas Mitrakas

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Ilias V. Karagounis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Stamatia Pouliliou

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aglaia Pappa

Democritus University of Thrace

View shared research outputs
Researchain Logo
Decentralizing Knowledge