Dimitri A. Diavatopoulos
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dimitri A. Diavatopoulos.
Emerging Infectious Diseases | 2009
Frits R. Mooi; Inge H. M. van Loo; Marjolein van Gent; Qiushui He; Marieke J. Bart; Kees Heuvelman; Sabine C. de Greeff; Dimitri A. Diavatopoulos; Peter Teunis; Nico Nagelkerke; Jussi Mertsola
A more virulent strain of the disease is emerging.
PLOS Pathogens | 2005
Dimitri A. Diavatopoulos; Craig A. Cummings; Leo M. Schouls; Mary M. Brinig; David A. Relman; Frits R. Mooi
Bordetella pertussis, B. bronchiseptica, B. parapertussishu, and B. parapertussisov are closely related respiratory pathogens that infect mammalian species. B. pertussis and B. parapertussishu are exclusively human pathogens and cause whooping cough, or pertussis, a disease that has resurged despite vaccination. Although it most often infects animals, infrequently B. bronchiseptica is isolated from humans, and these infections are thought to be zoonotic. B. pertussis and B. parapertussishu are assumed to have evolved from a B. bronchiseptica–like ancestor independently. To determine the phylogenetic relationships among these species, housekeeping and virulence genes were sequenced, comparative genomic hybridizations were performed using DNA microarrays, and the distribution of insertion sequence elements was determined, using a collection of 132 strains. This multifaceted approach distinguished four complexes, representing B. pertussis, B. parapertussishu, and two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Of the two B. bronchiseptica complexes, complex IV was more closely related to B. pertussis. Of interest, while only 32% of the complex I strains were isolated from humans, 80% of the complex IV strains were human isolates. Comparative genomic hybridization analysis identified the absence of the pertussis toxin locus and dermonecrotic toxin gene, as well as a polymorphic lipopolysaccharide biosynthesis locus, as associated with adaptation of complex IV strains to the human host. Lipopolysaccharide structural diversity among these strains was confirmed by gel electrophoresis. Thus, complex IV strains may comprise a human-associated lineage of B. bronchiseptica from which B. pertussis evolved. These findings will facilitate the study of pathogen host-adaptation. Our results shed light on the origins of the disease pertussis and suggest that the association of B. pertussis with humans may be more ancient than previously assumed.
The FASEB Journal | 2010
Dimitri A. Diavatopoulos; Kirsty R. Short; John T. Price; Jonathan J. Wilksch; Lorena E. Brown; David E. Briles; Richard A. Strugnell; Odilia L. C. Wijburg
Streptococcus pneumoniae (the pneumococcus) kills ~1.6 million people annually. Pneumococcal infections predominantly manifest as pneumonia, sepsis, meningitis, and otitis media. S. pneumoniae is also a member of the normal nasopharyngeal flora, colonizing up to 80% of children. Infection with influenza A virus (IAV) has been associated with both pneumococcal disease and transmission. However, to date no animal model has been available to investigate the role of IAV in the spread of S. pneumoniae. Here we investigate pneumococcal‐influenza synergism with a particular focus on the role of IAV on pneumococcal transmission. Infant mice were colonized with S. pneumoniae and subsequently infected with IAV 3 d later. Using this novel model we show increased pneumococcal colonization and disease in the presence of IAV. Notably, in vivo imaging showed that IAV was essential for the transmission of S. pneumoniae from colonized (“index”) mice to their naive cohoused littermates (“contacts”). Transmission occurred only when all mice were infected with IAV and was prevented when an IAV‐neutralizing antibody was used to inhibit IAV replication in either index mice or contact mice. Together, these data provide novel insights into pneumococcal‐influenza synergism and may indicate a previously unappreciated role of IAV in the spread of S. pneumoniae. —Diavatopoulos, D. A, Short, K. R., Price, J. T., Wilksch, J. J., Brown, L. E., Briles, D. E., Strugnell, R. A, Wijburg, O. L. Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J. 24, 1789–1798 (2010). www.fasebj.org
Nature Immunology | 2012
Greta Guarda; Thomas Gebhardt; Leif E. Sander; Kirsty R. Short; Dimitri A. Diavatopoulos; Odilia L. C. Wijburg; Hanwei Cao; Jason Waithman; Weisan Chen; Daniel Fernandez-Ruiz; Paul G. Whitney; William R. Heath; Roy Curtiss; Jürg Tschopp; Richard A. Strugnell; Sammy Bedoui
Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8+ T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α+ DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8+ T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.
Infection and Immunity | 2013
Kirsty R. Short; Patrick C. Reading; Lorena E. Brown; John Pedersen; Brad Gilbertson; Emma R. Job; Kathryn M. Edenborough; Marrit N. Habets; Aldert Zomer; Peter W. M. Hermans; Dimitri A. Diavatopoulos; Odilia L. C. Wijburg
ABSTRACT Influenza A virus (IAV) predisposes individuals to secondary infections with the bacterium Streptococcus pneumoniae (the pneumococcus). Infections may manifest as pneumonia, sepsis, meningitis, or otitis media (OM). It remains controversial as to whether secondary pneumococcal disease is due to the induction of an aberrant immune response or IAV-induced immunosuppression. Moreover, as the majority of studies have been performed in the context of pneumococcal pneumonia, it remains unclear how far these findings can be extrapolated to other pneumococcal disease phenotypes such as OM. Here, we used an infant mouse model, human middle ear epithelial cells, and a series of reverse-engineered influenza viruses to investigate how IAV promotes bacterial OM. Our data suggest that the influenza virus HA facilitates disease by inducing a proinflammatory response in the middle ear cavity in a replication-dependent manner. Importantly, our findings suggest that it is the inflammatory response to IAV infection that mediates pneumococcal replication. This study thus provides the first evidence that inflammation drives pneumococcal replication in the middle ear cavity, which may have important implications for the treatment of pneumococcal OM.
Future Microbiology | 2012
Kirsty R. Short; Marrit N. Habets; Peter W. M. Hermans; Dimitri A. Diavatopoulos
Historically, most research on infectious diseases has focused on infections with single pathogens. However, infections with pathogens often occur in the context of pre-existing viral and bacterial infections. Clinically, this is of particular relevance for coinfections with Streptococcus pneumoniae and influenza virus, which together are an important cause of global morbidity and mortality. In recent years new evidence has emerged regarding the underlying mechanisms of influenza virus-induced susceptibility to secondary pneumococcal infections, in particular regarding the sustained suppression of innate recognition of S. pneumoniae. Conversely, it is also increasingly being recognized that there is not a unidirectional effect of the virus on S. pneumoniae, but that asymptomatic pneumococcal carriage may also affect subsequent influenza virus infection and the clinical outcome. Here, we will review both aspects of pneumococcal influenza virus infection, with a particular focus on the age-related differences in pneumococcal colonization rates and invasive pneumococcal disease.
PLOS ONE | 2014
Daan de Gouw; Peter W. M. Hermans; Hester J. Bootsma; Aldert Zomer; Kees Heuvelman; Dimitri A. Diavatopoulos; Frits R. Mooi
Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence regulatory locus (bvgASR). The BvgAS proteins comprise a two component sensory transduction system which is regulated by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B. pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the vaccine antigens pertactin (Prn) and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the improvement of pertussis vaccines by identifying novel vaccine candidates.
The Journal of Infectious Diseases | 2011
Kirsty R. Short; Dimitri A. Diavatopoulos; Ruth Thornton; John Pedersen; Richard A. Strugnell; Andrew K. Wise; Patrick C. Reading; Odilia L. C. Wijburg
Otitis media (OM) is one of the most common childhood diseases. OM can arise when a viral infection enables bacteria to disseminate from the nasopharynx to the middle ear. Here, we provide the first infant murine model for disease. Mice coinfected with Streptococcus pneumoniae and influenza virus had high bacterial load in the middle ear, middle ear inflammation, and hearing loss. In contrast, mice colonized with S. pneumoniae alone had significantly less bacteria in the ear, minimal hearing loss, and no inflammation. Of interest, infection with influenza virus alone also caused some middle ear inflammation and hearing loss. Overall, this study provides a clinically relevant and easily accessible animal model to study the pathogenesis and prevention of OM. Moreover, we provide, to our knowledge, the first evidence that influenza virus alone causes middle ear inflammation in infant mice. This inflammation may then play an important role in the development of bacterial OM.
Mbio | 2012
Kirsty R. Short; Patrick C. Reading; Nancy Wang; Dimitri A. Diavatopoulos; Odilia L. C. Wijburg
ABSTRACT The transmission of the bacterium Streptococcus pneumoniae (the pneumococcus) marks the first step toward disease development. To date, our ability to prevent pneumococcal transmission has been limited by our lack of understanding regarding the factors which influence the spread of this pathogen. We have previously developed an infant mouse model of pneumococcal transmission which was strictly dependent on influenza A virus (IAV) coinfection of both the experimentally colonized “index mice” and the naive cohoused “contact mice.” Here, we sought to use this model to further elucidate the factors which facilitate S. pneumoniae transmission. In the present report, we demonstrate that increasing the nasopharyngeal load of S. pneumoniae in the colonized index mice (via the depletion of neutrophils) and inducing a proinflammatory response in the naive cohoused contact mice (as demonstrated by cytokine production) facilitates S. pneumoniae transmission. Thus, these data provide the first insights into the factors that help mediate the spread of S. pneumoniae throughout the community. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a major cause of worldwide morbidity and mortality and is a leading cause of death among children under the age of five years. Transmission of S. pneumoniae marks the first step toward disease development. Therefore, understanding the factors that influence the spread of pneumococci throughout the community plays an essential role in preventing pneumococcal disease. We previously developed the first reproducible infant mouse model for pneumococcal transmission and showed that coinfection with influenza virus facilitates the spread of S. pneumoniae. Here, we show that increasing the bacterial load in the nasal cavity of colonized individuals as well as inducing an inflammatory response in naive “contact cases” facilitates the spread of pneumococci. Therefore, this study helps to identify the factors which must be inhibited in order to successfully prevent pneumococcal disease. Streptococcus pneumoniae (the pneumococcus) is a major cause of worldwide morbidity and mortality and is a leading cause of death among children under the age of five years. Transmission of S. pneumoniae marks the first step toward disease development. Therefore, understanding the factors that influence the spread of pneumococci throughout the community plays an essential role in preventing pneumococcal disease. We previously developed the first reproducible infant mouse model for pneumococcal transmission and showed that coinfection with influenza virus facilitates the spread of S. pneumoniae. Here, we show that increasing the bacterial load in the nasal cavity of colonized individuals as well as inducing an inflammatory response in naive “contact cases” facilitates the spread of pneumococci. Therefore, this study helps to identify the factors which must be inhibited in order to successfully prevent pneumococcal disease.
European Journal of Immunology | 2012
Marloes Vissers; Thijs Remijn; Marije Oosting; Dirk J. de Jong; Dimitri A. Diavatopoulos; Peter W. M. Hermans; Gerben Ferwerda
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in infants, with remarkable variability in disease severity. An exaggerated proinflammatory response and influx of leukocytes is part of the pathogenesis of severe RSV disease. Here, we show an increase in proinflammatory cytokine production by human immune cells after stimulation with RSV and muramyl dipeptide (MDP), which is recognized by nucleotide‐binding oligomerization domain containing 2 (NOD2). PBMCs from Crohns disease patients homozygous for the 3020insC mutation in the NOD2 gene did not show a synergistic response to stimulation with RSV and MDP, suggesting that NOD2 is essential for the observed synergy. Further experiments aimed at identifying the viral ligand indicated that viral RNA plays an essential role in the recognition of RSV. Stimulation with RSV or Poly(I:C) induced IFN‐β expression, which resulted in an increased expression of the viral receptors TLR3 and RIG‐I, as well as an increased NOD2 expression. Our data indicate that IFN‐β induction by viral RNA is an essential first step in the increased proinflammatory response to MDP. We hypothesize that the enhanced proinflammatory response to MDP following RSV infection may be an important factor in determining the outcome of the severity of disease.