Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitri Ara is active.

Publication


Featured researches published by Dimitri Ara.


Homology, Homotopy and Applications | 2011

The Brown-Golasiński model structure on strict ∞-groupoids revisited

Dimitri Ara; François Métayer

We prove that the folk model structure on strict


Journal of K-theory | 2014

Higher quasi-categories vs higher Rezk spaces

Dimitri Ara

\infty


Applied Categorical Structures | 2012

The Groupoidal Analogue

Dimitri Ara

-categories transfers to the category of strict


Journal of Pure and Applied Algebra | 2013

\widetilde{{\Theta}}

Dimitri Ara

\infty


Advances in Mathematics | 2018

to Joyal’s Category Θ is a Test Category

Dimitri Ara; Georges Maltsiniotis

-groupoids (and more generally to the category of strict


Journal of Pure and Applied Algebra | 2013

Strict -groupoids are Grothendieck -groupoids

Dimitri Ara

(\infty, n)


Advances in Mathematics | 2014

Un théorème A de Quillen pour les ∞-catégories strictes I : la preuve simpliciale

Dimitri Ara; Georges Maltsiniotis

-categories), and that the resulting model structure on strict


Mathematische Zeitschrift | 2015

On the homotopy theory of grothendieck -groupoids

Dimitri Ara; Moritz Groth; Javier J. Gutiérrez

\infty


Mathematical Proceedings of the Cambridge Philosophical Society | 2018

Vers une structure de catégorie de modèles à la Thomason sur la catégorie des n-catégories strictes

Dimitri Ara; Denis-Charles Cisinski; Ieke Moerdijk

-groupoids coincides with the one defined by Brown and Golasinski via crossed complexes.


arXiv: Algebraic Topology | 2015

On autoequivalences of the

Dimitri Ara; Georges Maltsiniotis

We introduce a notion of n-quasi-categories as fibrant objects of a model category structure on presheaves on Joyals n-cell category \Theta_n. Our definition comes from an idea of Cisinski and Joyal. However, we show that this idea has to be slightly modified to get a reasonable notion. We construct two Quillen equivalences between the model category of n-quasi-categories and the model category of Rezk \Theta_n-spaces showing that n-quasi-categories are a model for (\infty, n)-categories. For n = 1, we recover the two Quillen equivalences defined by Joyal and Tierney between quasi-categories and complete Segal spaces.

Collaboration


Dive into the Dimitri Ara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moritz Groth

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Denis-Charles Cisinski

Institut de Mathématiques de Toulouse

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge