Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitri Karamata is active.

Publication


Featured researches published by Dimitri Karamata.


Molecular Microbiology | 1998

A novel protein kinase that controls carbon catabolite repression in bacteria

Jonathan Reizer; C Hoischen; Friedrich Titgemeyer; Carlo Rivolta; Ralf Rabus; Jörg Stülke; Dimitri Karamata; Milton H. Saier; Wolfgang Hillen

HPr(Ser) kinase is the sensor in a multicomponent phosphorelay system that controls catabolite repression, sugar transport and carbon metabolism in Gram‐positive bacteria. Unlike most other protein kinases, it recognizes the tertiary structure in its target protein, HPr, a phosphocarrier protein of the bacterial phosphotransferase system and a transcriptional cofactor controlling the phenomenon of catabolite repression. We have identified the gene (ptsK) encoding this serine/threonine protein kinase and characterized the purified protein product. Orthologues of PtsK have been identified only in bacteria. These proteins constitute a novel family unrelated to other previously characterized protein phosphorylating enzymes. The Bacillus subtilis kinase is shown to be allosterically activated by metabolites such as fructose 1,6‐bisphosphate and inhibited by inorganic phosphate. In contrast to wild‐type B. subtilis, the ptsK mutant is insensitive to transcriptional regulation by catabolite repression. The reported results advance our understanding of phosphorylation‐dependent carbon control mechanisms in Gram‐positive bacteria.


Microbiology | 1992

Sequencing and analysis of the Bacillus subtilis lytRABC divergon: A regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier

Vladimir Lazarevic; Philippe Margot; Blazenka Soldo; Dimitri Karamata

The regulatory unit of Bacillus subtilis strain 168 encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and of its modifier has been sequenced, and found to be a divergon consisting of divergently transcribed operons lytABC and lytR. Proteins LytA, LytB and LytC are endowed with export signal peptides. Mature LytA is a 9.4 kDa, highly acidic polypeptide whose deduced amino acid sequence points to a lipoprotein. LytB and LytC, the modifier and the amidase, are highly basic. After cleavage of the signal sequence their molecular masses are 74.1 and 49.9 kDa, respectively. These two proteins share considerable homology in their N-terminal moieties and have three GSNRY consensus motifs, characteristic of nearly all amidases. The C-terminal moiety of LytB exhibits homology to the product of spoIID. LytR is a 35 kDa protein which acts as an attenuator of the expression of both lytABC and lytR operons. Transcription of the lytABC operon proceeds from two promoters: PD, identified as P28-7 (Gilman et al., 1984), and an upstream PA. The former only is subject to LytR attenuation. Translational initiation of lytB and lytC is directed by UUG start codons, suggesting that lytA, B and C undergo coupled translation. Transcription of lytR is initiated at two start sites, one of which corresponds to a highly intense PA promoter whereas the other does not seem to share much homology with any of the known promoter consensus sequences. Both promoters are attenuated by LytR. It is confirmed that the synthesis of the amidase is controlled at least in part by SigD, i.e. that it belongs to the fla regulon and that its activity, or part of it, is co-regulated with flagellar motility. The role of the mutations conferring the Sin, Fla and Ifm phenotypes in the expression of the lytABC operon is discussed.


Molecular Genetics and Genomics | 1970

Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis

Dimitri Karamata; Julian D. Gross

SummaryFifty temperature-sensitive mutants defective in DNA synthesis at high temperature have been identified among 655 temperature-sensitive mutants isolated at random from a mutagenised population of B. subtilis. They are distributed in a non-random fashion in 9 genetic linkage groups, located in different regions of the B. subtilis genome. It is suggested that at least 14 genes are involved in B. subtilis DNA replication.


Molecular Microbiology | 1995

The tagGH operon of Bacillus subtilis 168 encodes a two‐component ABC transporter involved in the metabolism of two wall teichoic acids

Vladimir Lazarevic; Dimitri Karamata

We report the nucleotide sequence and the characterization of the Bacillus subtilis tagGH operon. The latter is controlled by a σA‐dependent promoter and situated in the 308° chromosomal region which contains genes involved in teichoic acid biosynthesis. TagG is a hydrophobic 32.2 kDa protein which resembles integral membrane proteins belonging to polymerexport systems of Gram‐negative bacteria. Gene tagH encodes a 59.9 kDa protein whose N‐moiety contains the ATP‐binding motif and shares extensive homology with a number of ATP‐binding proteins, particularly with those associated with the transport of capsular polysaccharides and O‐antigens. That the tagGH operon is essential for cell growth was established by the failure to inactivate tagG and the 5′ ‐moiety of tagH by insertional mutagenesis. During limited tagGH expression, cells exhibited a cocoid morphology while their walls contained reduced amounts of phosphate as well as galactosamine. These observations, revealing impaired metabolism of both wall teichoic acids of B. subtilis 168, i.e. poly(glycerol phosphate), and poly(glucose galactosamine phosphate), combined with sequence homologies, suggest that TagG and TagH are involved in the translocation through the cytoplasmic membrane of the latter teichoic acids or their precursors.


Microbiology | 1999

Bacillus subtilis 168 gene lytF encodes a γ-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD

Philippe Margot; Marco Pagni; Dimitri Karamata

Summary: A γ-D-glutamate-meso-diaminopimelate muropeptidase was detected in the vegetative growth phase of Bacillus subtilis 168. It is encoded by the monocistronic lytF operon expressed by the alternative vegetative sigma factor, σD. Sequence analysis of LytF revealed two domains, an organization common to exoproteins of B. subtilis as well as to those from other organisms. The N-terminal domain contains a fivefold-repeated motif attributed to cell wall binding, whilst the C-terminal domain is probably endowed with the catalytic activity. Overrexpression of LytF allowed its purification and biochemical characterization. Inactivation of lytF led to the loss of the cell-wall-bound protein 49′ (CWBP49′) and of the corresponding lytic activity as revealed by renaturation gel assay. Native cell walls prepared from the multiple lytC lytD lytE lytF-deficient mutant did not exhibit any autolysis, whereas walls prepared from a strain endowed with LytF but not with the other three enzymes underwent a slight lysis. Analysis of degradation products of cell wall devoid of teichoic-acid-bound O-esterified D-alanine unambiguously confirmed that LytF cuts the γ-D-glutamate-meso-diaminopimelate bond.


Microbiology | 1996

The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease

Philippe Margot; Dimitri Karamata

The nucleotide sequence of wprA, a protease-encoding gene of Bacillus subtilis 168, is reported. The gene, expressed during the exponential growth phase, belongs to a monocistronic operon. WprA is a 96 kDa polypeptide endowed with a signal peptide, as well as a propeptide. Upon processing and export, it gives rise to two previously identified cell-wall-bound proteins, CWBP23 and 52. Processing of WprA exhibits a novel feature of protein export, whereby removal of the middle part of the molecule accompanies the targeting to the cell wall of its N- and C-terminal parts, which correspond to CWBP23 and 52, respectively. Sequence analyses and enzymic assays reveal that CWBP52 is a serine protease. Growth rate, cell morphology, sporulation and motility of wprA mutants apparently do not differ from those of the parent strain.


Microbiology | 2002

tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168.

Blazenka Soldo; Vladimir Lazarevic; Dimitri Karamata

Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.


Microbiology | 1991

Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units

Catherine Mauël; Michael Young; Dimitri Karamata

Insertional mutagenesis has revealed that a 22 kbp segment from the hisA region of the Bacillus subtilis 168 chromosome (310 degrees on the genetic map) contains at least six independent transcription units, all apparently devoted to production of cell envelope components. Genes concerned with synthesis of poly(glycerol phosphate), poly(groP), an essential cell wall polymer in B. subtilis 168, are organized in two divergently transcribed operons denoted tagABC and tagDEF. Nucleotide sequence analysis indicates that three of these six genes encode extremely basic polypeptides. The deduced products of the tagABC operon may be involved in poly(groP) assembly and export, whereas those of the tagDEF operon, which are very hydrophilic, are more likely to be implicated in poly(groP) precursor biosynthesis. The first gene of the tagDEF operon encodes glycerol-3-phosphate cytidylyltransferase (Pooley et al., 1991, Journal of General Microbiology 137, 921-928) and its deduced product has significant homology with cholinephosphate cytidylyltransferase from yeast. There is also substantial homology between the deduced products of tagB in the tagABC operon and tagF in the tagDEF operon.


Microbiology | 1999

Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPβc2

Vladimir Lazarevic; Andreas Düsterhöft; Blazenka Soldo; Helmut Hilbert; Catherine Mauël; Dimitri Karamata

The Bacillus subtilis 168 chromosomal region extending from 184 degrees to 195 degrees, corresponding to prophage SPbeta, has been completely sequenced using DNA of the thermoinducible SPbetac2 mutant. This 134416 bp segment comprises 187 putative ORFs which, according to their orientation, were grouped into three clusters. Compared to its host, SPbetac2 is characterized by a lower G+C content, shorter mean ORF length, as well as a different usage of start codons. Nearly 75% of predicted ORFs do not share significant homologies to sequences in available databases. The only highly similar proteins to SPbetac2-encoded ones are host paralogues. SPbetac2 promoter regions contain SOS box consensus sequences and a repeated motif, designated SPbeta repeated element (SPBRE), that is absent from the host genome. Gene sspC, encoding the small acid-soluble protein C, that has been previously sequenced and mapped to the vicinity of the SPbeta region, was found to be part of the prophage.


Molecular Genetics and Genomics | 1989

The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis

Catherine Mauël; Michael Young; Philippe Margot; Dimitri Karamata

SummaryA 30 kb DNA segment from the region of the Bacillus subtilis strain 168 chromosome which contains most, if not all, loci specifically involved in teichoic acid biosynthesis, has been cloned. A restriction map was established to which genetic markers were assigned. Four loci, tagA, tagB, gtaA and gtaD, are located on a DNA segment of about 7 kb, whereas the gtaB locus lies some 10 kb distant. The tagA and tagB loci are apparently transcribed independently. Insertional mutagenesis, using integrational plasmids carrying relevant fragments from the tag region, provides strong evidence that biosynthesis of polyglycerol phosphate [poly(groP)], so far largely considered as a dispensable polymer, is in fact essential for growth.

Collaboration


Dive into the Dimitri Karamata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Pagni

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge