Dimitri Perrin
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dimitri Perrin.
Cell | 2014
Etsuo A. Susaki; Kazuki Tainaka; Dimitri Perrin; Fumiaki Kishino; Takehiro Tawara; Tomonobu M. Watanabe; Chihiro Yokoyama; Hirotaka Onoe; Megumi Eguchi; Shun Yamaguchi; Takaya Abe; Hiroshi Kiyonari; Yoshihiro Shimizu; Atsushi Miyawaki; Hideo Yokota; Hiroki R. Ueda
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.
Neuron | 2016
Fumiya Tatsuki; Genshiro A. Sunagawa; Shoi Shi; Etsuo A. Susaki; Hiroko Yukinaga; Dimitri Perrin; Kenta Sumiyama; Maki Ukai-Tadenuma; Hiroshi Fujishima; Rei-ichiro Ohno; Daisuke Tone; Koji L. Ode; Katsuhiko Matsumoto; Hiroki R. Ueda
The detailed molecular mechanisms underlying the regulation of sleep duration in mammals are still elusive. To address this challenge, we constructed a simple computational model, which recapitulates the electrophysiological characteristics of the slow-wave sleep and awake states. Comprehensive bifurcation analysis predicted that a Ca(2+)-dependent hyperpolarization pathway may play a role in slow-wave sleep and hence in the regulation of sleep duration. To experimentally validate the prediction, we generate and analyze 21 KO mice. Here we found that impaired Ca(2+)-dependent K(+) channels (Kcnn2 and Kcnn3), voltage-gated Ca(2+) channels (Cacna1g and Cacna1h), or Ca(2+)/calmodulin-dependent kinases (Camk2a and Camk2b) decrease sleep duration, while impaired plasma membrane Ca(2+) ATPase (Atp2b3) increases sleep duration. Pharmacological intervention and whole-brain imaging validated that impaired NMDA receptors reduce sleep duration and directly increase the excitability of cells. Based on these results, we propose a hypothesis that a Ca(2+)-dependent hyperpolarization pathway underlies the regulation of sleep duration in mammals.
Cell Reports | 2016
Genshiro A. Sunagawa; Kenta Sumiyama; Maki Ukai-Tadenuma; Dimitri Perrin; Hiroshi Fujishima; Hideki Ukai; Osamu Nishimura; Shoi Shi; Rei-ichiro Ohno; Ryohei Narumi; Yoshihiro Shimizu; Daisuke Tone; Koji L. Ode; Shigehiro Kuraku; Hiroki R. Ueda
The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research.
PLOS ONE | 2010
Karthika Raghavan; Heather J. Ruskin; Dimitri Perrin; Francois Goasmat; John Burns
Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.
Journal of Theoretical Biology | 2010
Dimitri Perrin; Heather J. Ruskin; Tohru Niwa
Epigenetic changes correspond to heritable modifications of the chromatin structure, which do not involve any alteration of the DNA sequence but nonetheless affect gene expression. These mechanisms play an important role in cell differentiation, but aberrant occurrences are also associated with a number of diseases, including cancer and neural development disorders. In particular, aberrant DNA methylation induced by H. Pylori has been found to be a significant risk factor in gastric cancer. To investigate the sensitivity of different genes and cell types to this infection, a computational model of methylation in gastric crypts is developed. In this article, we review existing results from physical experiments and outline their limitations, before presenting the computational model and investigating the influence of its parameters.
computational aspects of social networks | 2009
Benoît Claude; Dimitri Perrin; Heather J. Ruskin
Understanding the dynamics of disease spread is of crucial importance, in contexts such as estimating load on medical services to risk assessment and intervention policies against large-scale epidemic outbreaks. However, most of the information is available after the spread itself, and preemptive assessment is far from trivial. Here, we investigate the use of agent-based simulations to model such outbreaks in a stylised urban environment. For most diseases, infection of a new individual may occur from casual contact in crowds as well as from repeated interactions with social partners such as work colleagues or family members. Our model therefore accounts for these two phenomena.Presented in this paper is the initial framework for such a model, detailing implementation of geographical features and generation of social structures. Preliminary results are a promising step towards large-scale simulations and evaluation of potential intervention policies.
advanced information networking and applications | 2012
Hiroyuki Ohsaki; Yosuke Yamada; Dimitri Perrin; Makoto Imase
In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.
Advances in Experimental Medicine and Biology | 2011
Dimitri Perrin
Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.
Advances in Complex Systems | 2010
Grainne Kerr; Dimitri Perrin; Heather J. Ruskin; Martin Crane
In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed. Keywords: Edge-weighting; weighted graphs; gene expression; bi-clustering
computer software and applications conference | 2013
Yuto Nakai; Dimitri Perrin; Hiroyuki Ohsaki; Ray Walshe
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.