Dimitrios Fanourakis
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dimitrios Fanourakis.
Journal of Experimental Botany | 2012
Andreas Savvides; Dimitrios Fanourakis; Wim van Ieperen
Long-term effects of light quality on leaf hydraulic conductance (Kleaf) and stomatal conductance (gs) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640 nm), blue (B, 420 nm) or combined red and blue (R:B, 70:30) light. Kleaf and gs were much lower in leaves that developed without blue light. Differences in gs were caused by differences in stomatal aperture and stomatal density, of which the latter was largely due to differences in epidermal cell size and hardly due to stomatal development. Net photosynthesis (AN) was lowest in R-, intermediate in B-, and highest in RB- grown leaves. The low AN in R-grown leaves correlated with a low leaf internal CO2 concentration and reduced PSII operating efficiency. In response to osmotic stress, all leaves showed similar degrees of stomatal closure, but the reduction in AN was larger in R- than in B- and RB-grown leaves. This was probably due to damage of the photosynthetic apparatus, which only occurred in R-grown leaves. The present study shows the co-ordination of Kleaf and gs across different light qualities, while the presence of blue in the light spectrum seems to drive both Kleaf and gs towards high, sun-type leaf values, as was previously reported for maximal photosynthetic capacity and leaf morphology. The present results suggest the involvement of blue light receptors in the usually harmonized development of leaf characteristics related to water relations and photosynthesis under different light environments.
Physiologia Plantarum | 2011
Dimitrios Fanourakis; S.M.P. Carvalho; Domingos P.F. Almeida; E. Heuvelink
Plants of several species, if grown at high relative air humidity (RH ≥85%), develop stomata that fail to close fully in case of low leaf water potential. We studied the effect of a reciprocal change in RH, at different stages of leaf expansion of Rosa hybrida grown at moderate (60%) or high (95%) RH, on the stomatal closing ability. This was assessed by measuring the leaf transpiration rate in response to desiccation once the leaves had fully expanded. For leaves that started expanding at high RH but completed their expansion after transfer to moderate RH, the earlier this switch took place the better the stomatal functioning. Leaves initially expanding at moderate RH and transferred to high RH exhibited poor stomatal functioning, even when this transfer occurred very late during leaf expansion. Applying a daily abscisic acid (ABA) solution to the leaves of plants grown at continuous high RH was effective in inducing stomatal closure at low water potential, if done before full leaf expansion (FLE). After FLE, stomatal functioning was no longer affected either by the RH or ABA level. The results indicate that the degree of stomatal adaptation depends on both the timing and duration of exposure to high RH. It is concluded that stomatal functionality is strongly dependent on the humidity at which the leaf completed its expansion. The data also show that the effect of ambient RH and the alleviating role of ABA are restricted to the period of leaf expansion.
Journal of Plant Physiology | 2013
Habtamu Giday; Katrine Heinsvig Kjaer; Dimitrios Fanourakis; Carl-Otto Ottosen
Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth conditions were also assessed. High growth RH resulted in thinner (11%) leaves with larger area. A strong positive genetic correlation of daytime and nighttime transpiration at either RH was observed. Stomatal size determined pore area (r=0.7) and varied by a factor of two, as a result of proportional changes in length and width. Size and density of stomata were not related. Following desiccation, high RH resulted in a significantly lower (6-19%) decline of transpiration in three cultivars, whereas the relative water content (RWC) of high RH-expanded leaflets was lower (29-297%) in seven cultivars. The lower RWC of these leaflets was caused by (a) higher (33-72%) stable transpiration and/or (b) lower (12-143%) RWC at which this stable transpiration occurred, depending on the cultivar. Stomatal size was significantly correlated with both characteristics (r=0.5 and -0.7, respectively). These results indicate that stomatal size explains much of the intraspecific variation in the regulation of transpiration upon water deprivation on rose.
Plant Physiology | 2011
W.G. van Doorn; T. Hiemstra; Dimitrios Fanourakis
The concentration of cations in the xylem sap influences the rate of xylem water flow in angiosperm plants. It has been speculated that this is due to the shrinking and swelling of pectins in the pit membranes. However, there is as yet minimal evidence for the presence of pectin in pit membranes of angiosperms. The little pectin that has been found at the pit membrane edges of some species might not be adequate to explain the swelling and shrinking phenomena. The presence of hemicelluloses is also not certain. Lignin, by contrast, seems to be sometimes present, apart from cellulose, which is the main component. An alternative hypothesis is formulated, which involves the shrinking of any polyelectrolyte polymers in the pit membrane and a change in volume of the mobile phase in the pit pores. These phenomena are the result of electrostatic events. Some pit membrane polymers are negatively charged because of proton dissociation from functional groups. This charge is compensated by cations in the aqueous phase, which form a diffuse double layer (DDL). Inside the pit pores, an increase of the electrolyte concentration in the xylem sap will reduce the extent of the DDL. This will result in an increase in water flow. Additional flow enhancement, upon increase of the cation concentration, can be due to shrinkage of all membrane polymers. This contraction will also lead to an increase of the pit pore diameter. These processes will only be partly counteracted by forces that decrease the diameter of the pit pore due to relaxation.
Journal of Experimental Botany | 2014
Habtamu Giday; Dimitrios Fanourakis; Katrine Heinsvig Kjaer; Inge S. Fomsgaard; Carl-Otto Ottosen
Summary Leaf abscisic acid concentration mediates the growth environment-induced effects on both the control of water loss during desiccation and the restoration of water uptake upon re-watering.
Annals of Botany | 2013
Habtamu Giday; Dimitrios Fanourakis; Katrine Heinsvig Kjaer; Inge S. Fomsgaard; Carl-Otto Ottosen
BACKGROUND AND AIMS Stomata formed at high relative air humidity (RH) respond less to abscisic acid (ABA), an effect that varies widely between cultivars. This study tested the hypotheses that this genotypic variation in stomatal responsiveness originates from differential impairment in intermediates of the ABA signalling pathway during closure and differences in leaf ABA concentration during growth. METHODS Stomatal anatomical features and stomatal responsiveness to desiccation, feeding with ABA, three transduction elements of its signalling pathway (H2O2, NO, Ca(2+)) and elicitors of these elements were determined in four rose cultivars grown at moderate (60 %) and high (90 %) RH. Leaf ABA concentration was assessed throughout the photoperiod and following mild desiccation (10 % leaf weight loss). KEY RESULTS Stomatal responsiveness to desiccation and ABA feeding was little affected by high RH in two cultivars, whereas it was considerably attenuated in two other cultivars (thus termed sensitive). Leaf ABA concentration was lower in plants grown at high RH, an effect that was more pronounced in the sensitive cultivars. Mild desiccation triggered an increase in leaf ABA concentration and equalized differences between leaves grown at moderate and high RH. High RH impaired stomatal responses to all transduction elements, but cultivar differences were not observed. CONCLUSIONS High RH resulted in decreased leaf ABA concentration during growth as a result of lack of water deficit, since desiccation induced ABA accumulation. Sensitive cultivars underwent a larger decrease in leaf ABA concentration rather than having a higher ABA concentration threshold for inducing stomatal functioning. However, cultivar differences in stomatal closure following ABA feeding were not apparent in response to H2O2 and downstream elements, indicating that signalling events prior to H2O2 generation are involved in the observed genotypic variation.
Plant Methods | 2015
Sergej Bergsträsser; Dimitrios Fanourakis; Simone Schmittgen; Maria Pilar Cendrero-Mateo; Marcus Jansen; Hanno Scharr; Uwe Rascher
Postharvest Biology and Technology | 2013
Dimitrios Fanourakis; Roland Pieruschka; Andreas Savvides; Andrew J. Macnish; V. Sarlikioti; Ernst J. Woltering
Postharvest Biology and Technology | 2012
Dimitrios Fanourakis; S.M.P. Carvalho; Domingos P.F. Almeida; Olaf van Kooten; Wouter G. van Doorn; E. Heuvelink
Plant Methods | 2014
Dimitrios Fanourakis; Christoph Briese; Johannes Fj Max; Silke Kleinen; Alexander Putz; Fabio Fiorani; Andreas Ulbrich; Ulrich Schurr