Dimitrios L. Kalpaxis
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dimitrios L. Kalpaxis.
Molecular Cell | 2004
George P. Dinos; Daniel N. Wilson; Yoshika Teraoka; Witold Szaflarski; Paola Fucini; Dimitrios L. Kalpaxis; Knud H. Nierhaus
The crystal structures of the universal translation-initiation inhibitors edeine and pactamycin bound to ribosomal 30S subunit have revealed that edeine induces base pairing of G693:C795, residues that constitute the pactamycin binding site. Here, we show that base pair formation by addition of edeine inhibits tRNA binding to the P site by preventing codon-anticodon interaction and that addition of pactamycin, which rebreaks the base pair, can relieve this inhibition. In addition, edeine induces translational misreading in the A site, at levels comparable to those induced by the classic misreading antibiotic streptomycin. Binding of pactamycin between residues G693 and C795 strongly inhibits translocation with a surprising tRNA specificity but has no effect on translation initiation, suggesting that reclassification of this antibiotic is necessary. Collectively, these results suggest that the universally conserved G693:C795 residues regulate tRNA binding at the P site of the ribosome and influence translocation efficiency.
Environmental Research | 2004
Dimitrios L. Kalpaxis; Christos Theos; Maria A. Xaplanteri; George P. Dinos; Angella V Catsiki; Michel Leotsinidis
Specimens of Mytilus galloprovincialis were placed in bow nets and immersed at 3-10 m depth in a clean coastal region (reference area), Itea, and two marine stations along Gulf of Patras, N. Peloponnesus, Greece. One site is near the estuaries of the Glafkos River, which are influenced by local industrial and urban sources (Station 1); the second site, Agios Vasilios, has no evident organic pollution but is enriched in metals, particularly zinc (Station 2). One month after immersion, digestive glands were removed from the mussels and tested for lysosomal membrane stability, metallothionein content, and translational efficiency of ribosomes. In addition, gill cells were isolated and their micronuclei content was determined. Compared with the reference samples, mussels transplanted to Gulf of Patras showed a significant increased lysosomal membrane permeability and metallothionein content, reduced polysome levels, and increased chromosomal damage in relation to the contamination burden of each sampling area. Also, runoff ribosomes from mussels transplanted to Gulf of Patras (that is, ribosomes stripped of endogenous messengers and peptidyl- or/and aminoacyl-tRNAs) were less efficient at initiating protein synthesis in an in vitro-translation system than those prepared from reference samples. The whole set of data suggests that the degree of Gulf of Patras pollution differs between different sites and depends on the proximity of urban sewage and industrial outfalls. In addition, our results emphasize the importance of protein synthesis regulation as a component of the cellular stress response.
Nucleic Acids Research | 2005
Maria A. Xaplanteri; Alexandros D. Petropoulos; George P. Dinos; Dimitrios L. Kalpaxis
Polyamine binding to 23S rRNA was investigated, using a photoaffinity labeling approach. This was based on the covalent binding of a photoreactive analog of spermine, N1-azidobenzamidino (ABA)-spermine, to Escherichia coli ribosomes or naked 23S rRNA under mild irradiation conditions. The cross-linking sites of ABA-spermine in 23S rRNA were determined by RNase H digestion and primer-extension analysis. Domains I, II, IV and V in naked 23S rRNA were identified as discrete regions of preferred cross-linking. When 50S ribosomal subunits were targeted, the interaction of the photoprobe with the above 23S rRNA domains was elevated, except for helix H38 in domain II whose susceptibility to cross-linking was greatly reduced. In addition, cross-linking sites were identified in domains III and VI. Association of 30S with 50S subunits, poly(U), tRNAPhe and AcPhe-tRNA to form a post-translocation complex further altered the cross-linking, in particular to helices H11–H13, H21, H63, H80, H84, H90 and H97. Poly(U)-programmed 70S ribosomes, reconstituted from photolabeled 50S subunits and untreated 30S subunits, bound AcPhe-tRNA in a similar fashion to native ribosomes. However, they exhibited higher reactivity toward puromycin and enhanced tRNA-translocation efficiency. These results suggest an essential role for polyamines in the structural and functional integrity of the large ribosomal subunit.
Nucleic Acids Research | 2005
George P. Dinos; Dimitrios L. Kalpaxis; Daniel N. Wilson; Knud H. Nierhaus
The presence or absence of deacylated tRNA at the E site sharply influences the activation energy required for binding of a ternary complex to the ribosomal A site indicating the different conformations that the E-tRNA imparts on the ribosome. Here we address two questions: (i) whether or not peptidyltransferase—the essential catalytic activity of the large ribosomal subunit—also depends on the occupancy state of the E site and (ii) at what stage the E-tRNA is released during an elongation cycle. Kinetics of the puromycin reaction on various functional states of the ribosome indicate that the A-site substrate of the peptidyltransferase center, puromycin, requires the same activation energy for peptide-bond formation under all conditions tested. We further demonstrate that deacylated tRNA is released from the E site by binding a ternary complex aminoacyl-tRNA•EF-Tu•GDPNP to the A site. This observation indicates that the E-tRNA is released after the decoding step but before both GTP hydrolysis by EF-Tu and accommodation of the A-tRNA. Collectively these results reveal that the reciprocal linkage between the E and A sites affects the decoding center on the 30S subunit, but does not influence the rate of peptide-bond formation at the active center of the 50S subunit.
Journal of Molecular Biology | 2009
Alexandros D. Petropoulos; Ekaterini C. Kouvela; Agata L. Starosta; Daniel N. Wilson; George P. Dinos; Dimitrios L. Kalpaxis
Azithromycin is a semisynthetic derivative of erythromycin that inhibits bacterial protein synthesis by binding within the peptide exit tunnel of the 50S ribosomal subunit. Nevertheless, there is still debate over what localization is primarily responsible for azithromycin binding and as to how many molecules of the drug actually bind per ribosome. In the present study, kinetic methods and footprinting analysis are coupled together to provide time-resolved details of the azithromycin binding process. It is shown that azithromycin binds to Escherichia coli ribosomes in a two-step process: The first-step involves recognition of azithromycin by the ribosomal machinery and places the drug in a low-affinity site located in the upper part of the exit tunnel. The second step corresponds to the slow formation of a final complex that is both much tighter and more potent in hindering the progression of the nascent peptide through the exit tunnel. Substitution of uracil by cytosine at nucleoside 2609 of 23S rRNA, a base implicated in the high-affinity site, facilitates the shift of azithromycin to this site. In contrast, mutation U754A hardly affects the binding process. Binding of azithromycin to both sites is hindered by high concentrations of Mg(2+) ions. Unlike Mg(2+) ions, polyamines do not significantly affect drug binding to the low-affinity site but attenuate the formation of the final complex. The low- and high-affinity sites of azithromycin binding are mutually exclusive, which means that one molecule of the drug binds per E. coli ribosome at a time. In contrast, kinetic and binding data indicate that in Deinococcus radiodurans, two molecules of azithromycin bind cooperatively to the ribosome. This finding confirms previous crystallographic results and supports the notion that species-specific structural differences may primarily account for the apparent discrepancies between the antibiotic binding modes obtained for different organisms.
Aquatic Toxicology | 2011
Sofia Pytharopoulou; Konstantinos Grintzalis; Eleni Sazakli; Michel Leotsinidis; Christos D. Georgiou; Dimitrios L. Kalpaxis
Certain metals, like Hg, Cu and Cd, are capable of down-regulating protein synthesis in several marine organisms, including Mytilus galloprovincialis. Nevertheless, due to the complexity of the environmental stress, it is difficult to evaluate the influence of individual metals on protein synthesis via field studies. To bypass this difficulty, experimental studies were carried out on M. galloprovincialis exposed in aquarium for 15 days to one of three selected metal salts, HgCl(2), CuCl(2) and CdCl(2). Polysome profile was determined in digestive gland extracts of the exposed mussels as a way of measuring the functional status of ribosomes, superoxide radical production and lipid peroxidation as indicators of oxidative stress, metallothionein content as a metal detoxification index, and superoxide dismutase activity as a free radicals-scavenging index. Exposure of mussels to Hg(2+) or Cu(2+) resulted in a concentration- and time-dependent decrease in the polysome content of digestive gland cells, which at 15th day of exposure and at the highest metal concentrations tested, was 32% and 19% of the control, respectively. Both metals, at the concentrations used (<40 μg/L), did not significantly influence the oxidative stress biomarkers. By contrast, Cd(2+) treatment significantly induced superoxide radical production and lipid peroxidation in digestive gland cells, hinting that mussels suffered from oxidative stress. Polysome levels in Cd(2+)-exposed mussels were initially decreased by day 5 in digestive gland cells and then elevated to reach nearly the control levels by 15 days of exposure. Elevated protein synthesis was associated with significantly increased production of metallothioneins, whereas such increase was not recorded in Hg(2+)- or Cu(2+)-exposed mussels. Interestingly, the ribosome efficiency at initiating protein synthesis followed a similar pattern of polysome alterations, a fact suggesting that regulation of protein synthesis mainly occurred at the initiation phase of translation. Overall, these results suggest that the effect of each metal on protein synthesis is idiosyncratic and depends on its ability to induce specific cellular defense mechanisms against oxidative stress.
Journal of Biological Chemistry | 2008
Alexandros D. Petropoulos; Ekaterini C. Kouvela; George P. Dinos; Dimitrios L. Kalpaxis
Erythromycin and tylosin are 14- and 16-membered lactone ring macrolides, respectively. The current work shows by means of kinetic and chemical footprinting analysis that both antibiotics bind to Escherichia coli ribosomes in a two-step process. The first step established rapidly, involves a low-affinity binding site placed at the entrance of the exit tunnel in the large ribosomal subunit, where macrolides bind primarily through their hydrophobic portions. Subsequently, slow conformational changes mediated by the antibiotic hydrophilic portion push the drugs deeper into the tunnel, in a high-affinity site. Compared with erythromycin, tylosin shifts to the high-affinity site more rapidly, due to the interaction of the mycinose sugar of the drug with the loop of H35 in domain II of 23 S rRNA. Consistently, mutations of nucleosides U2609 and U754 implicated in the high-affinity site reduce the shift of tylosin to this site and destabilize, respectively, the final drug-ribosome complex. The weak interaction between tylosin and the ribosome is Mg2+ independent, unlike the tight binding. In contrast, both interactions between erythromycin and the ribosome are reduced by increasing concentrations of Mg2+ ions. Polyamines attenuate erythromycin affinity for the ribosome at both sequential steps of binding. In contrast, polyamines facilitate the initial binding of tylosin, but exert a detrimental, more pronounced, effect on the drug accommodation at its final position. Our results emphasize the role of the particular interactions that side chains of tylosin and erythromycin establish with 23 S rRNA, which govern the exact binding process of each drug and its response to the ionic environment.
Journal of Biological Chemistry | 2004
Alexandros D. Petropoulos; Maria A. Xaplanteri; George P. Dinos; Daniel N. Wilson; Dimitrios L. Kalpaxis
The effects of spermine on peptidyltransferase inhibition by an aminohexosylcytosine nucleoside, blasticidin S, and by a macrolide, spiramycin, were investigated in a model system derived from Escherichia coli, in which a peptide bond is formed between puromycin and AcPhe-tRNA bound at the P-site of poly(U)-programmed ribosomes. Kinetics revealed that blasticidin S, after a transient phase of interference with the A-site, is slowly accommodated near to the P-site so that peptide bond is still formed but with a lower catalytic rate constant. At high concentrations of blasticidin S (>10 × Ki), a second drug molecule binds to a weaker binding site on ribosomes, and this may account for the onset of a subsequent mixed-noncompetitive inhibition phase. Spermine enhances the blasticidin S inhibitory effect by facilitating the drug accommodation to both sites. On the other hand, spiramycin (A) was found competing with puromycin for the A-site of AcPhe-tRNA·poly(U)·70 S ribosomal complex (C) via a two-step mechanism, according to which the fast formation of the encounter complex CA is followed by a slow isomerization to a tighter complex, termed C*A. In contrast to that observed with blasticidin S, spermine reduced spiramycin potency by decreasing the formation and stability of complex C*A. Polyamine effects on drug binding were more pronounced when a mixture of spermine and spermidine was used, instead of spermine alone. Our kinetic results correlate well with cross-linking and crystallographic data and suggest that polyamines bound at the vicinity of the antibiotic binding pockets modulate diversely the interaction of these drugs with ribosomes.
Molecular Pharmacology | 2006
Panagiotis Karahalios; Dimitrios L. Kalpaxis; Hong Fu; Leonard Katz; Daniel N. Wilson; George P. Dinos
New 16-membered 9-aryl-alkyl oxime derivatives of 5-O-mycaminosyl-tylonolid (OMT) have recently been prepared and were found to exhibit high activity against macrolide-resistant strains. In this study, we show that these compounds do not affect the binding of tRNAs to ribosomes in a cell-free system derived from Escherichia coli and that they cannot inhibit peptidyltransferase, peptidyl-tRNA translocation, or poly(U)-dependent poly(Phe) synthesis. However, they severely inhibit poly(A)-dependent poly(Lys) synthesis and compete with erythromycin or tylosin for binding to common or partially overlapping sites in the ribosome. According to footprinting analysis, the lactone ring of these compounds seems to occupy the classic binding site of macrolides that is located at the entrance of the exit tunnel, whereas the extending alkyl-aryl side chain seems to penetrate deeper in the tunnel, where it protects nucleoside A752 in domain II of 23S rRNA. In addition, this side chain causes an increased affinity for mutant ribosomes that may be responsible for their effectiveness against macrolide resistant strains. As revealed by detailed kinetic analysis, these compounds behave as slow-binding ligands interacting with functional ribosomal complexes through a one-step mechanism. This type of inhibitor has several attractive features and offers many chances in designing new potent drugs.
Nucleic Acids Research | 2014
Ourania N. Kostopoulou; Ekaterini C. Kouvela; George E. Magoulas; Thomas Garnelis; Ioannis Panagoulias; Maria Rodi; Georgios Papadopoulos; Athanasia Mouzaki; George P. Dinos; Dionissios Papaioannou; Dimitrios L. Kalpaxis
Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.