Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitrios Stamatialis is active.

Publication


Featured researches published by Dimitrios Stamatialis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

An algorithm-based topographical biomaterials library to instruct cell fate

H.V. Unadkat; Marc Hulsman; Kamiel Cornelissen; Bernke J. Papenburg; Roman Truckenmüller; Anne E. Carpenter; Matthias Wessling; Gerhard F. Post; Marc Uetz; Marcel J. T. Reinders; Dimitrios Stamatialis; Clemens van Blitterswijk; Jan de Boer

It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces.


Biomaterials | 2009

Development and analysis of multi-layer scaffolds for tissue engineering

Bernke J. Papenburg; Jun Liu; Gustavo A. Higuera; Ana M.C. Barradas; Jan de Boer; Clemens van Blitterswijk; Matthias Wessling; Dimitrios Stamatialis

The development of 3D scaffolds consisting of stacked multi-layered porous sheets featuring microchannels is proposed and investigated in this work. In this concept, the inner-porosity of the sheets allows diffusion of nutrients and signalling products between the layers whereas the microchannels facilitate nutrient supply on all layers as they provide space for the culture medium to be perfused throughout the scaffold. Besides the above, these scaffolds have excellent distribution of the cells as seeding and attaching of the cells occurs on individual layers that are subsequently stacked. In addition, these scaffolds enable gaining local data from within the scaffolds as unstacking of the stacked layers allows for determination of various parameters per layer. Here, we show the proof of this concept by culturing C2C12 pre-myoblasts and A4-4 cells on stacked Poly(l-lactic acid) (PLLA) sheets featuring microchannels. The results obtained for culturing under static conditions clearly indicate that despite inhibited cell proliferation due to nutrient limitations, diffusion between the layers takes place and cells on various layers stay viable and also affect each other. Under dynamic conditions, medium flow through the channels improves nutrient availability to the cells on the various layers, drastically increasing cell proliferation on all layers.


Biomaterials | 2013

Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma

M.S.L. Tijink; Maarten Wester; Griet Glorieux; Karin G. Gerritsen; J. Sun; Pieter C. Swart; Zandrie Borneman; Matthias Wessling; Raymond Vanholder; Jaap A. Joles; Dimitrios Stamatialis

In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes.


Biofabrication | 2015

Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation

Giulia Marchioli; L van Gurp; P P van Krieken; Dimitrios Stamatialis; Marten A. Engelse; C.A. van Blitterswijk; Marcel Karperien; E.J.P. de Koning; Jacqueline Alblas; Lorenzo Moroni; A.A. van Apeldoorn

In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate blood mediated inflammatory response, lack of vascularization, and allo- and autoimmunity. Bioengineered scaffolds can potentially provide an alternative extra-hepatic transplantation site for islets by improving nutrient diffusion and blood supply to the scaffold. This would ultimately result in enhanced islet viability and functionality compared to conventional intra portal transplantation. In this regard, the biomaterial choice, the three-dimensional (3D) shape and scaffold porosity are key parameters for an optimal construct design and, ultimately, transplantation outcome. We used 3D bioplotting for the fabrication of a 3D alginate-based porous scaffold as an extra-hepatic islet delivery system. In 3D-plotted alginate scaffolds the surface to volume ratio, and thus oxygen and nutrient transport, is increased compared to conventional bulk hydrogels. Several alginate mixtures have been tested for INS1E β-cell viability. Alginate/gelatin mixtures resulted in high plotting performances, and satisfactory handling properties. INS1E β-cells, human and mouse islets were successfully embedded in 3D-plotted constructs without affecting their morphology and viability, while preventing their aggregation. 3D plotted scaffolds could help in creating an alternative extra-hepatic transplantation site. In contrast to microcapsule embedding, in 3D plotted scaffold islets are confined in one location and blood vessels can grow into the pores of the construct, in closer contact to the embedded tissue. Once revascularization has occurred, the functionality is fully restored upon degradation of the scaffold.


Biomaterials | 2010

Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites

Sabrina Morelli; Simona Salerno; Atonella Piscionen; Bernke J. Papenburg; Anna Di Vito; Guiseppina Giusi; Marcello Canonaco; Dimitrios Stamatialis; Enrico Drioli; Loredana De Bartolo

In neuronal tissue engineering many efforts are focused on creating biomaterials with physical and chemical pathways for controlling cellular proliferation and orientation. Neurons have the ability to respond to topographical features in their microenvironment causing among others, axons to proliferate along surface features such as substrate grooves in micro-and nanoscales. As a consequence these neuronal elements are able to correctly adhere, migrate and orient within their new environment during growth. Here we explored the polarization and orientation of hippocampal neuronal cells on nonpatterned and micro-patterned biodegradable poly(l-lactic acid) (PLLA) membranes with highly selective permeable properties. Dense and porous nonpatterned and micro-patterned membranes were prepared from PLLA by Phase Separation Micromolding. The micro-patterned membranes have a three-dimensional structure consisting of channels and ridges and of bricks of different widths. Nonpatterned and patterned membranes were used for hippocampal neuronal cultures isolated from postnatal days 1-3 hamsters and the neurite length, orientation and specific functions of cells were investigated up to 12 days of culture. Neurite outgrowth, length plus orientation tightly overlapped the pattern of the membrane surface. Cell distribution occurred only in correspondence to membrane grooves characterized by continuous channels whereas on membranes with interconnected channels, cells not only adhered to and elongated their cellular processes in the grooves but also in the breaking points. High orientation degrees of cells were determined particularly on the patterned porous membranes with channel width of 20 mum and ridges of 17 mum whereas on dense nonpatterned membranes as well as on polystyrene culture dish (PSCD) controls, a larger number of primary developed neurites were distributed. Based on these results, PLLA patterned membranes may directly improve the guidance of neurite extension and thereby enhancing their orientation with a consequently highly ordered neuronal cell matrix, which may have strong bearings on the elucidation of regeneration mechanisms.


Soft Matter | 2010

Insights into the role of material surface topography and wettability on cell-material interactions

Bernke J. Papenburg; Emilie Dooms Rodrigues; Matthias Wessling; Dimitrios Stamatialis

This work investigates the effect of surface topography and biomaterial wettability on protein absorption, cell attachment, proliferation and morphology and reveals important insights in the complexity of cell-material interactions. We use various materials, i.e. poly(dimethyl siloxane) (PDMS), poly(L-lactic acid) (PLLA), a co-polymer of poly(ethylene oxide) and poly(butylene terephtalate) (PEOT/PBT) and tissue culture polystyrene (TCPS) as a reference. These materials are used extensively in biomedical applications and tissue engineering and have differences in hydrophobicity. Patterning of PDMS, PLLA and PEOT/PBT with a micropattern array of pillars with variable pillar spacing and pillar height induces changes in the wettability of their surfaces without changes in their surface chemistry. The cell study is performed using C2C12 pre-myoblasts cells. Our results reveal a clear effect of surface topography, and to a lesser extent of material hydrophobicity, on cell attachment, morphology and proliferation. Generally, surface topography on high hydrophobicity materials improves initial C2C12 cell attachment, whereas less hydrophobic and nonpatterned materials seem to support higher cell proliferation and spreading. With respect to cell morphology, surface topography seems dominant over material wettability; although the transition where cells change from growing on top of the pillars to growing on the underlying surface appears to be determined by the material wettability. These findings are important in the design of biomaterials in various applications including implants, bio-artificial organs and tissue engineering.


Acta Biomaterialia | 2015

Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology

Marc Hulsman; Frits Hulshof; H.V. Unadkat; Bernke J. Papenburg; Dimitrios Stamatialis; Roman Truckenmüller; Clemens van Blitterswijk; Jan de Boer; Marcel J. T. Reinders

Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces.


Acta Biomaterialia | 2011

Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs

N.M.S. Bettahalli; J. Vicente; Lorenzo Moroni; Gustavo A. Higuera; C.A. van Blitterswijk; Matthias Wessling; Dimitrios Stamatialis

Sufficient nutrient and oxygen transport is a potent modulator of cell proliferation in in vitro tissue-engineered constructs. The lack of oxygen and culture medium can create a potentially lethal environment and limit cellular metabolic activity and growth. Diffusion through scaffold and multi-cellular tissue typically limits transport in vitro, leading to potential hypoxic regions and reduction in the viable tissue thickness. For the in vitro generation of clinically relevant tissue-engineered grafts, current nutrient diffusion limitations should be addressed. Major approaches to overcoming these include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers and pre-vascularization of the engineered tissues. This study focuses on the development and utilization of a new perfusion culture system to provide adequate nutrient delivery to cells within large three-dimensional (3D) scaffolds. Perfusion of oxygenated culture medium through porous hollow fiber (HF) integrated within 3D free form fabricated (FFF) scaffolds is proposed. Mouse pre-myoblast (C2C12) cells cultured on scaffolds of poly(ethylene-oxide-terephthalate)-poly(butylene-terephthalate) block copolymer (300PEOT55PBT45) integrated with porous HF membranes of modified poly(ether-sulfone) (mPES, Gambro GmbH) is used as a model system. Various parameters such as fiber transport properties, fiber spacing within a scaffold and medium flow conditions are optimized. The results show that four HF membranes integrated with the scaffold significantly improve the cell density and cell distribution. This study provides a basis for the development of a new HF perfusion culture methodology to overcome the limitations of nutrient diffusion in the culture of large 3D tissue constructs.


Acta Biomaterialia | 2013

Hollow fibers of poly(lactide-co-glycolide) and poly(ε-caprolactone) blends for vascular tissue engineering applications.

Nazely Diban; Suvi Haimi; Lydia A.M. Bolhuis-Versteeg; Sandra Teixeira; Susanna Miettinen; André A. Poot; Dirk W. Grijpma; Dimitrios Stamatialis

At present the manufacture of small-diameter blood vessels is one of the main challenges in the field of vascular tissue engineering. Currently available vascular grafts rapidly fail due to development of intimal hyperplasia and thrombus formation. Poly(lactic-co-glycolic acid) (PLGA) hollow fiber (HF) membranes have previously been proposed for this application, but as we show in the present work, they have an inhibiting effect on cell proliferation and rather poor mechanical properties. To overcome this we prepared HF membranes via phase inversion using blends of PLGA with poly(ε-caprolactone) (PCL). The influence of polymer composition on the HF physicochemical properties (topography, water transport and mechanical properties) and cell attachment and proliferation were studied. Our results show that only the ratio PCL/PLGA of 85/15 (PCL/PLGA85/15) yielded a miscible blend after processing. A higher PLGA concentration in the blend led to immiscible PCL/PLGA phase-separated HFs with an inhomogeneous morphology and variation in the cell culture results. In fact, the PCL/PLGA85/15 blend, which had the most homogeneous morphology and suitable pore structure, showed better human adipose stem cell (hASC) attachment and proliferation compared with the homopolymers. This, combined with the good mechanical and transport properties, makes them potentially useful for the development of small-caliber vascular grafts.


Scientific Reports | 2015

Human proximal tubule epithelial cells cultured on hollow fibers: living membranes that actively transport organic cations.

Jitske Jansen; I E De Napoli; Michele Fedecostante; Carolien M.S. Schophuizen; N. Chevtchik; Martijn J. Wilmer; A H van Asbeck; H J Croes; Jeanne Pertijs; Jack F.M. Wetzels; Luuk B. Hilbrands; L.P.W.J. van den Heuvel; Joost G.J. Hoenderop; Dimitrios Stamatialis; Rosalinde Masereeuw

The bioartificial kidney (BAK) aims at improving dialysis by developing ‘living membranes’ for cells-aided removal of uremic metabolites. Here, unique human conditionally immortalized proximal tubule epithelial cell (ciPTEC) monolayers were cultured on biofunctionalized MicroPES (polyethersulfone) hollow fiber membranes (HFM) and functionally tested using microfluidics. Tight monolayer formation was demonstrated by abundant zonula occludens-1 (ZO-1) protein expression along the tight junctions of matured ciPTEC on HFM. A clear barrier function of the monolayer was confirmed by limited diffusion of FITC-inulin. The activity of the organic cation transporter 2 (OCT2) in ciPTEC was evaluated in real-time using a perfusion system by confocal microscopy using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as a fluorescent substrate. Initial ASP+ uptake was inhibited by a cationic uremic metabolites mixture and by the histamine H2-receptor antagonist, cimetidine. In conclusion, a ‘living membrane’ of renal epithelial cells on MicroPES HFM with demonstrated active organic cation transport was successfully established as a first step in BAK engineering.

Collaboration


Dive into the Dimitrios Stamatialis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan de Boer

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge