Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitris Kioussis is active.

Publication


Featured researches published by Dimitris Kioussis.


European Journal of Immunology | 2003

Transgenic mice with hematopoietic and lymphoid specific expression of Cre.

Jasper de Boer; Adam Williams; George Skavdis; Nicola Harker; Mark Coles; Mauro Tolaini; Trisha Norton; Keith Williams; Kathleen Roderick; Alexandre J. Potocnik; Dimitris Kioussis

Bacteriophage P1 Cre/loxP based systems can be used to manipulate the genomes of mice in vivo and in vitro, allowing the generation of tissue‐specific conditional mutants. Wehave generated mouse lines expressing Cre recombinase in hematopoietic tissues using the vav regulatory elements, or in lymphoid cells using the hCD2 promoter and locus control region (LCR). The R26R‐EYFP Cre reporter mouse line was used to determine the pattern of Cre expression in each line and enabled the assessment of Cre activity at a single‐cell level. Analysis showed that the vav promoter elements were able to direct Cre‐mediated recombination in all cells of the hematopoietic system. The hCD2 promoter and LCR on the other hand were able to drive Cre‐mediated recombination only in T cells and B cells, but not in other hematopoietic cell types. Furthermore, in the appropriate tissues, deletion of the floxed target was complete in all cells, thereby excluding the possibility of variegated expression of the Cre transgene. Both of these Cre‐transgenic lines will be useful in generating tissue‐specific gene deletions within all the cells of hematopoietic or lymphoid tissues.


Immunity | 1995

Low avidity recognition of self-antigen by T cells permits escape from central tolerance.

George Y. Liu; Paul J. Fairchild; Richard M. Smith; John R. Prowle; Dimitris Kioussis; David C. Wraith

The immunodominant epitope of myelin basic protein, Ac1-9, is encephalitogenic in H-2u mice. We have previously demonstrated that this epitope displays low affinity for I-Au and have suggested that the avidity of T cell recognition in the thymus may be compromised, enabling autoreactive T cells to escape self-tolerance. We have addressed this hypothesis directly by constructing transgenic mice expressing an encephalitogenic T cell receptor (TCR). Parenteral administration of Ac1-9 had no discernable impact on developing thymocytes. In contrast, peptide analogs displaying far higher affinity for I-Au, provoked deletion of CD4+ CD8+ cells and transient down-regulation of the TCR by mature CD4+ CD8- thymocytes. The use of analogs of intermediate affinity permitted a margin of error to be defined for the induction of tolerance and confirmed that the affinity of Ac1-9 lies well below the critical threshold.


Science | 1996

Locus Control Region Function and Heterochromatin-Induced Position Effect Variegation

Richard Festenstein; Mauro Tolaini; Paola Corbella; Clio Mamalaki; Jenny Parrington; Margaret Fox; Antigoni Miliou; Margaret Jones; Dimitris Kioussis

Human CD2 locus control region (LCR) sequences are shown here to be essential for establishing an open chromatin configuration. Transgenic mice carrying an hCD2 minigene attached only to the 3′ CD2 transcriptional enhancer exhibited variegated expression when the transgene integrated in the centromere. In contrast, mice carrying a transgene with additional 3′ sequences showed no variegation even when the latter integrated in centromeric positions. This result suggests that LCRs operate by ensuring an open chromatin configuration and that a short region, with no enhancer activity, functions in the establishment, maintenance, or both of an open chromatin domain.


Cell Stem Cell | 2007

Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal.

Kathryn A. McMahon; Samantha Y.-L. Hiew; Henrique Veiga-Fernandes; Ursula Menzel; Amanda J. Price; Dimitris Kioussis; Owen Williams; Hugh J. M. Brady

The Mixed Lineage Leukemia (Mll) gene is a homolog of Drosophila Trithorax commonly rearranged in infant leukemia. Comprehensive analysis of the role of Mll in hematopoiesis in fetal and adult knockout mice has been prevented by the lethality of Mll(-/-) mice. We have established a conditional deletion model that allows us to study adult hematopoiesis in the absence of Mll. In this study, Mll(-/-) embryos survive to E16.5 and have reduced numbers of HSCs. The quiescent fraction of these HSCs is greatly reduced, and they are unable to compete with wild-type cells in transplantation assays. Mice with Mll expression conditionally deleted in the hematopoietic system have grossly normal hematopoiesis in bone marrow, thymus, and spleen. However, transplanted Mll-deficient bone marrow cells are highly compromised in their ability to competitively reconstitute irradiated recipients. These results suggest a critical role for Mll in regulating stem cell self-renewal.


Nature | 2007

Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis.

Henrique Veiga-Fernandes; Mark Coles; Katie Foster; Amisha Patel; Adam Williams; Dipa Natarajan; Amanda J. Barlow; Vassilis Pachnis; Dimitris Kioussis

Normal organogenesis requires co-ordinate development and interaction of multiple cell types, and is seemingly governed by tissue specific factors. Lymphoid organogenesis during embryonic life is dependent on molecules the temporal expression of which is tightly regulated. During this process, haematopoietic ‘inducer’ cells interact with stromal ‘organizer’ cells, giving rise to the lymphoid organ primordia. Here we show that the haematopoietic cells in the gut exhibit a random pattern of motility before aggregation into the primordia of Peyer’s patches, a major component of the gut-associated lymphoid tissue. We further show that a CD45+CD4-CD3-Il7Rα-c-Kit+CD11c+ haematopoietic population expressing lymphotoxin has an important role in the formation of Peyer’s patches. A subset of these cells expresses the receptor tyrosine kinase RET, which is essential for mammalian enteric nervous system formation. We demonstrate that RET signalling is also crucial for Peyer’s patch formation. Functional genetic analysis revealed that Gfra3-deficiency results in impairment of Peyer’s patch development, suggesting that the signalling axis RET/GFRα3/ARTN is involved in this process. To support this hypothesis, we show that the RET ligand ARTN is a strong attractant of gut haematopoietic cells, inducing the formation of ectopic Peyer’s patch-like structures. Our work strongly suggests that the RET signalling pathway, by regulating the development of both the nervous and lymphoid system in the gut, has a key role in the molecular mechanisms that orchestrate intestine organogenesis.


Nature Genetics | 2004

The European dimension for the mouse genome mutagenesis program

Johan Auwerx; Phil Avner; Richard Baldock; Andrea Ballabio; Rudi Balling; Mariano Barbacid; Anton Berns; Allan Bradley; Steve D.M. Brown; Peter Carmeliet; Pierre Chambon; Roger D. Cox; Duncan Davidson; Kay E. Davies; Denis Duboule; Jiri Forejt; Francesca Granucci; Nicholas D. Hastie; Martin Hrabé de Angelis; Ian J. Jackson; Dimitris Kioussis; George Kollias; Mark Lathrop; Urban Lendahl; Marcos Malumbres; Harald von Melchner; Werner Müller; Juha Partanen; Paola Ricciardi-Castagnoli; Peter Rigby

The European Mouse Mutagenesis Consortium is the European initiative contributing to the international effort on functional annotation of the mouse genome. Its objectives are to establish and integrate mutagenesis platforms, gene expression resources, phenotyping units, storage and distribution centers and bioinformatics resources. The combined efforts will accelerate our understanding of gene function and of human health and disease.


Cell | 1991

Thymic selection in CD8 transgenic mice supports an instructive model for commitment to a CD4 or CD8 lineage

Ellen A. Robey; B. J. Fowlkes; Jon W. Gordon; Dimitris Kioussis; Harald von Boehmer; Fred Ramsdell; Richard Axel

Immature thymocytes, which coexpress CD4 and CD8, give rise to mature CD4+CD8- and CD4-CD8+ T cells. Only those T cells that recognize self-MHC are selected to mature, a process known as positive selection. The specificity of the T cell antigen receptor (TCR) for class I or class II MHC influences the commitment to a CD4 or CD8 lineage. This may occur by a directed mechanism or by stochastic commitment followed by a selection step that allows only CD8+, class I-specific and CD4+, class II-specific cells to survive. We have generated a mouse line expressing a CD8 transgene under the control of the T cell-specific CD2 regulatory sequences. Although constitutive CD8 expression does not affect thymic selection of CD4+ cells, selection of a class I-specific TCR in the CD8 subset is substantially improved. This outcome is consistent with a model for positive selection in which selection occurs at a developmental stage in which both CD4 and CD8 are expressed, and positive selection by class I MHC generates an instructive signal that directs differentiation to a CD8 lineage.


Developmental Immunology | 1993

Positive and negative selection in transgenic mice expressing a T-cell receptor specific for influenza nucleoprotein and endogenous superantigen.

Clio Mamalaki; James A. Elliott; Trisha Norton; Nicholas Yannoutsos; Alain Townsend; Phillip R. Chandler; Elizabeth Simpson; Dimitris Kioussis

A transgenic mouse was generated expressing on most (>80%) of thymocytes and peripheral T cells a T-cell receptor isolated from a cytotoxic T-cell clone (F5). This clone is CD8+ and recognizes αα366-374 of the nucleoprotein (NP 366-374) of influenza virus (A/NT/60/68), in the context of Class ,MHC Db (Townsend et al., 1986). The receptor utilizes the Vβ11 and Vα4 gene segments for the β chain and α chain, respectively (Palmer et al., 1989). The usage of Vβ11 makes this TcR reactive to Class II IE molecules and an endogenous ligand recently identified as a product of the endogenous mammary tumour viruses (Mtv) 8, 9, and 11 (Dyson et al., 1991). Here we report the development of F5 transgenic T cells and their function in mice of the appropriate MHC (C57BL/10 H-2b, IE-) or in mice expressing Class II MHC IE (e.g., CBA/Ca H-2k and BALB/c H-2d) and the endogenous Mtv ligands. Positive selection of CD8+ T cells expressing the Vβ11 is seen in C57BL/10 transgenic mice (H-2b). Peripheral T cells from these mice are capable of killing target cells in an antigen-dependent manner after a period of in vitro culture with IL-2. In the presence of Class II MHC IE molecules and the endogenous Mtv ligand, most of the single-positive cells carrying the transgenic T-cell receptor are absent in the thymus. Unexpectedly, CD8+ peripheral T-cells in these (H-2k or H-2d) F5 mice are predominantly Vβ11 positive and also have the capacity to kill targets in an antigen-dependent manner. This is true even following backcrossing of the F5 TcR transgene to H-2d scid/scid mice, in which functional rearrangement of endogenous TcR alpha- and beta-chain genes is impaired.


Current Opinion in Genetics & Development | 1997

Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals.

Dimitris Kioussis; Richard Festenstein

Differentiation of specific cell types during the development of mammals requires the selective silencing or activation of tissue-specific genes. Locus control regions (LCRs) are gene regulatory elements that act in cis to ensure that active transcriptional units are established in all cells of a given cell lineage. Over the past year, it has become clear that this process takes place at the level of chromatin remodelling, and that LCRs ensure that this decision is made by both alleles in every cell. Studies on LCRs and analysis of gene expression in transgenic mice at the single cell level has revealed that the breakdown in LCR function accompanying the deletion of specific sequences results in a phenomenon known as position effect variegation, described in detail in yeast and Drosophila. Thus, when located in close proximity to heterochromatin a transgene linked to a disabled LCR is randomly silenced in a proportion of cells. This finding implies that all subregions within an LCR are necessary to ensure the establishment of an open chromatin configuration of a gene even when the latter is located in a highly heterochromatic region.


Molecular Cell | 2002

The CD8α Gene Locus Is Regulated by the Ikaros Family of Proteins

Nicola Harker; Taku Naito; Marta Cortes; Arnd Hostert; Sandra Hirschberg; Mauro Tolaini; Kathleen Roderick; Katia Georgopoulos; Dimitris Kioussis

Abstract Ikaros family members are important regulatory factors in lymphocyte development. Here we show that Ikaros may play an important role in CD4 versus CD8 lineage commitment decisions by demonstrating: (1) that it binds to regulatory elements in the endogenous CD8α locus in vivo using thymocyte chromatin immunoprecipitations, (2) that Ikaros suppresses position effect variegation of transgenes driven by CD8 regulatory elements, and (3) that mice with reduced levels of Ikaros and Aiolos show an apparent increase in CD4 populations with immature phenotype, i.e., cells that failed to activate the CD8α gene locus. We propose that Ikaros family members function as activators of the CD8α gene locus and that their associated activities are critical for appropriate chromatin remodeling transitions during thymocyte differentiation and lineage commitment.

Collaboration


Dive into the Dimitris Kioussis's collaboration.

Top Co-Authors

Avatar

Owen Williams

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katie Foster

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yujiro Tanaka

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Frank Grosveld

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge