Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dimitris S. Achilias is active.

Publication


Featured researches published by Dimitris S. Achilias.


Biomaterials | 2004

Water sorption characteristics of light-cured dental resins and composites based on Bis-EMA/PCDMA

Irini D. Sideridou; Dimitris S. Achilias; Chrysa Spyroudi; Maria M. Karabela

The water uptake characteristics of resins and composites based on an ethoxylated bisphenol A glycol dimethacrylate (Bis-EMA) and a polycarbonate dimethacrylate (PCDMA) were studied in detail. Polydimethacrylate resins were prepared by photopolymerization of the neat monomers and mixtures of them with various weight ratios, using the camphoroquinone/N,N-dimethylaminoethyl methacrylate system as initiator, while the composites were prepared from the light-curing of commercial samples (Sculpt-It and Alert). Water sorption/desorption was examined both in equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. The equilibrium water uptake from all resins was very small with a trend to increase as the amount of PCDMA was increased. The inverse effect was observed in the solubility values. The composites studied exhibited also very low water uptake values in comparison to other composite materials reported in the literature. It was also observed that the equilibrium uptake decreased with increasing filler loading. Slightly larger equilibrium water uptake and much smaller solubility values were obtained during the second sorption-desorption cycle in comparison to the first one. Concerning the sorption rate data, it was observed that the resin materials followed Fickian diffusion during almost the whole sorption or desorption curve, while the composites showed this behavior until only M(t)/M( infinity ) congruent with 0.5. The diffusion coefficients calculated for the resins were larger than those of the composites and always higher during desorption compared to sorption. The values of the diffusion coefficients for both resins and composites were in the same order of magnitude with the values of the corresponding materials reported in the literature.


Water, Air, & Soil Pollution: Focus | 2004

The Chemical Recycling of PET in the Framework of Sustainable Development

Dimitris S. Achilias; George P. Karayannidis

In this investigation, all the techniques used in the chemical recycling of polyethylene terephthalate (PET) are critically reviewed according to the overall benefits together with the environmental surcharge that they cause. Those, which are consistent with the principles of sustainable development, are indicated. Experimental data are presented for the acid hydrolysis of PET and compared with previous results on the alkaline hydrolysis of PET with, or without, the use of a phase transfer catalyst. Overall material balances are carried out for the hydrolysis of PET. Finally, it can be postulated that recycling according to the scheme:is the only one within the framework of sustainable development. Therefore, the recycling of PET does not only serve as a partial solution to the solid waste problem but also contributes to the conservation of raw petrochemical products and energy.


Polymer | 2003

Study of various catalysts in the synthesis of poly(propylene terephthalate) and mathematical modeling of the esterification reaction

George P. Karayannidis; Christos Roupakias; Dimitris N. Bikiaris; Dimitris S. Achilias

Abstract Pure terephthalic acid (TPA) was esterified with 1,3-propanediol (1,3-PDO) in the presence of various catalysts, in order to find the most effective one for this esterification reaction. The prepared oligomers were polycondensated in a second step under high vacuum and using the same catalyst (Sb(OCOCH3)3, Ti(OC4H9)4, GeO2) as before, or the well known catalyst for poly(ethylene terephthalate) (PET) production technology Sb2O3. The esterification reaction was monitored by measuring the distilled water as a function of time and from these data the modeling of this process was carried out. The received poly(propylene terephthalate) (PPT) samples were characterized by viscometry, carboxyl end-group content and color measurement. From this study, tetrabutoxytitanium was proved to be the most effective catalyst for the esterification reaction. When this catalyst was used in the second step a PPT polymer with the highest molecular weight was received.


Macromolecular Materials and Engineering | 2001

Poly(ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid. Kinetics of a Phase Transfer Catalyzed Alkaline Hydrolysis

Vassilis A. Kosmidis; Dimitris S. Achilias; George P. Karayannidis

Poly(ethylene terephthalate) (PET) taken from post-consumer soft-drink bottles was subjected to alkaline hydrolysis with aqueous sodium hydroxide after cutting it into small pieces (flakes). A phase transfer catalyst (trioctylmethylammonium bromide) was used in order the reaction to take place in atmospheric pressure and mild experimental conditions. Several different reaction kinetics parameters were studied, including temperature (70–95°C), NaOH concentration (5–15 wt.-%), PET average particle size, catalyst to PET ratio and PET concentration. The disodium terephthalate received was treated with sulfuric acid and terephthalic acid (TPA) of high purity was separated. The 1H NMR spectrum of the TPA revealed an about 2% admixture of isophthalic acid together with the pure 98% terephthalic acid. The purity of the TPA obtained was tested by determining its acidity and by polymerizing it with ethylene glycol using tetrabutyl titanate as catalyst. A simple theoretical model was developed to describe the hydrolysis rate. The apparent rate constant was inversely proportional to particle size and proportional to NaOH concentration and to the square root of the catalyst amount. The activation energy calculated was 83 kJ/mol. The method is very useful in recycling of PET bottles and other containers because nowadays, terephthalic acid is replacing dimethyl terephthalate (the traditional monomer) as the main monomer in the industrial production of PET.


International Journal of Pharmaceutics | 2012

Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems.

Sofia Papadimitriou; Dimitris S. Achilias; Dimitrios N. Bikiaris

In the present study chitosan grafted copolymers with poly(ethylene glycol) (CS-g-PEG) were prepared and studied using PEG with molecular weights 2000 and 5000g/mol. The materials were characterized using (1)H NMR, FTIR and WAXD techniques. These polyelectrolytes were ionically crosslinked with tripolyphosphate (TPP) and poly(glutamic acid) (PGA) at different polymer/crosslinking agent ratios (1:1, 2:1, 3:1 and 4:1, w/w) for the nanoencapsulation of bovine serum albumin (BSA). Prepared nanoparticles are spherical in shape with a mean diameter ranging from 150 to 600 nm. The size depends mainly to the molecular weight of the PEG and the crosslinking agent used. The PEG molecular weight also seems to affect the release rate of BSA especially the first burst effect which appears to be high in copolymers containing PEG5000, compared with copolymer prepared with PEG2000, and it is also higher when PGA was used as crosslinking agent, instead of TPP.


Journal of Macromolecular Science-polymer Reviews | 1992

Toward the Development of a General Framework for Modeling Molecular Weight and Compositional Changes in Free-Radical Copolymerization Reactions

Dimitris S. Achilias; C. Kiparissides

Abstract Synthetic copolymers are produced as a mixture of macromolecules with varying degree of polymerization, copolymer composition, and degree of branching. The ability to predict molecular properties in a copolymerization process as a function of the reactor operating conditions is of considerable economic importance to the polymer industry.


Journal of Macromolecular Science, Part A | 2012

Cure Kinetics Study of Two Epoxy Systems with Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC)

Dimitris S. Achilias; Maria M. Karabela; Eleni A. Varkopoulou; Irini D. Sideridou

This work was aimed at the study of cure kinetics of two commercial thermosetting epoxy systems, Epikote resin 816 LV/Epikure F205 and Epikote resin 240/Epikure F205, by Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The studied systems consist of a resin (A), based on a diglycidyl ether of bisphenol A and a hardener (B) based on the Isophorodiamine (IPDA) a cycloaliphatic diamine. These systems are used for the building and civil engineering industries, e.g. flooring compounds, adhesives, mortars and grouts. FTIR spectroscopy was employed to investigate the isothermal curing kinetics at 30, 50 or 70°C and DSC analysis to study the non-isothermal curing kinetics at different heating rates 2.5, 5, 10 and 20°C/min, from 20 to 300°C. A kinetic model was employed to simulate the FTIR isothermal experimental data using two kinetic rate constants and incorporating also diffusion control at high degrees of conversion. Finally, the variation of the effective activation energy with the extent of curing was estimated using isoconversional analysis of non-isothermal DSC data.


Journal of Macromolecular Science, Part A | 2002

STUDY OF THE EFFECT OF TWO BPO/AMINE INITIATION SYSTEMS ON THE FREE-RADICAL POLYMERIZATION OF MMA USED IN DENTAL RESINS AND BONE CEMENTS

Dimitris S. Achilias; Irini D. Sideridou

ABSTRACT The kinetics of the free radical bulk polymerization of methyl methacrylate (MMA) was studied by DSC, using the benzoyl peroxide (BPO)/amine initiation system. N,N dimethyl-4-aminophenethyl alcohol (DMPOH), which is a newly synthesized and used amine in the preparation of acrylic dental resins and bone cements was examined, and the results compared to the most commonly used in these applications amine, the N,N dimethyl-p-toluidine (DMT). For both amines, the effect of the molar ratio of BPO/amine and of the reaction temperature, on the polymerization kinetics was investigated. The prepared polymers were characterized by determination of the average molecular weights (M¯ n and M¯ w ) and molecular weights distribution (M¯ w /M¯ n ) using Gel Permeation Chromatography. DMPOH was found to lead in slightly higher polymerization rates, lower gel times and lower molecular weights than DMT. The values of these parameters for both amines were influenced by the molar ratio of BPO to amine, when the product of the concentrations of these was kept constant. The highest polymerization rate occurred in the lowest gel time, resulting in polymers with the lowest molecular weight, and was observed when a molar ratio of about 1.5 BPO/amine was used. However, the final monomer conversion was found to be independent of the molar ratio and amine used. The activation energy of polymerization was found to be 51.8 kJ/mol K for BPO/DMPOH and 47.1 kJ/mol K for BPO/DMT.


Polymer Chemistry | 2015

Sustainable, eco-friendly polyesters synthesized from renewable resources: preparation and thermal characteristics of poly(dimethyl-propylene furanoate)

Vasilios Tsanaktsis; Zoe Terzopoulou; Stylianos Exarhopoulos; Dimitrios N. Bikiaris; Dimitris S. Achilias; Dimitrios G. Papageorgiou; George Z. Papageorgiou

Poly(2,2-dimethyl-1,3-propylene furanoate) (PDMPF), an interesting sustainable biobased polyester based on 2,5-furan dicarboxylic acid (FDCA), was synthesized by applying the two-stage melt polycondensation method. The polyester exhibited a melting temperature of Tm = 198 °C and a glass transition temperature of Tg = 68 °C. Multiple melting was observed for the samples crystallized isothermally at temperatures ranging from 160 to 175 °C. Extensive recrystallization was evidenced by modulated temperature differential scanning calorimetry (MDSC) during heating. The equilibrium melting temperature was found to be and the enthalpy of fusion of the pure crystalline polymer was ΔHf = 133 J g−1. The crystallization rates were analyzed according to the secondary nucleation theory, and a relatively large nucleation constant Kg was obtained, representing the rigidity of the macromolecular chains. Large spherulites were observed during isothermal crystallization tests with the aid of polarized light optical microscopy (PLOM). The polyester showed significant stability during the thermal degradation tests. Finally, the degradation mechanism was investigated by employing a pyrolyzer–gas chromatography–mass spectroscopy (Py-GC-MS) system.


Journal of Thermal Analysis and Calorimetry | 2014

Investigation of the radical polymerization kinetics using DSC and mechanistic or isoconversional methods

Dimitris S. Achilias

In this research, an effort was undertaken to investigate radical polymerization kinetics using experimental data from DSC measurements and mechanistic or isoconversional models. Polymerization of a polar monomer, namely 2-hydroxyethyl methacrylate in the presence of benzoyl peroxide initiator was studied. The variation of the effective activation energy with conversion was directly interpreted in terms of the physical phenomena taking place during the reaction in a microscale. Both isothermal and non-isothermal DSC data were employed and the effect of diffusion-controlled phenomena on the reaction kinetics at different conversion regimes was assessed. Finally, the effect of the presence of nanofiller on polymerization kinetics and the activation energy values were estimated and correlated to physical phenomena taking place during polymerization.

Collaboration


Dive into the Dimitris S. Achilias's collaboration.

Top Co-Authors

Avatar

George Z. Papageorgiou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Dimitrios N. Bikiaris

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

George P. Karayannidis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Irini D. Sideridou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Dimitris N. Bikiaris

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Alexandros K. Nikolaidis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Halim Hamid Redhwi

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar

Mohammad Nahid Siddiqui

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar

C. Kiparissides

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

E.V. Antonakou

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge